com.intel.analytics.bigdl.nn.onnx.Gemm.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.onnx
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.nn.ops.{BatchMatMul, Operation}
import com.intel.analytics.bigdl.nn.{CAddTable, Graph, Input, MulConstant, Sequential}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* General Matrix multiplication
*
* Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M),
* input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N),
* and output tensor Y has shape (M, N).
*
* @param alpha Scalar multiplier for the product of input tensors A * B.
* @param beta Scalar multiplier for input tensor C.
* @param transA Whether A should be transposed
* @param transB Whether B should be transposed
* @param matrixB matrix B
* @param matrixC matrix C
* @param ev
* @tparam T The numeric type in this module parameters.
*/
private[bigdl] class Gemm[T: ClassTag](
val alpha: Float, val beta: Float,
val transA: Boolean, val transB: Boolean,
val matrixB: Tensor[T],
val matrixC: Tensor[T]
)(implicit ev: TensorNumeric[T])
extends Operation[Tensor[T], Tensor[T], T] {
// require(matrixB.dim() == 2, "Matrix B should be 2D")
// require(matrixC.dim() == 2, "Matrix C should be 2D")
// alpha * B'
val transformedMatrixB = (if (transB == true) matrixB.t() else matrixB).mul(ev.fromType(alpha))
// beta * C
val transformedMatrixC = matrixC.mul(ev.fromType(beta))
// alpha * A' * B' + beta * C
val gemmGraph: Module[T] = {
val inputA = Input()
val inputB = Input()
val inputC = Input()
// alpha * A' * B'
val alphaMul = BatchMatMul(adjX = transA).inputs(Array(inputA, inputB))
// alpha * A' * B' + beta * C
val betaAdd = CAddTable().inputs(Array(alphaMul, inputC))
Graph(Array(inputA, inputB, inputC), betaAdd)
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output = gemmGraph.forward(T(input,
transformedMatrixB, transformedMatrixC)).asInstanceOf[Tensor[T]]
output
}
override def release(): Unit = {
gemmGraph.release()
release()
}
}
object Gemm {
def apply[@specialized(Float, Double) T: ClassTag](
alpha: Float, beta: Float,
transA: Boolean, transB: Boolean,
matrixB: Tensor[T], matrixC: Tensor[T]
)(implicit ev: TensorNumeric[T]): Gemm[T] = {
new Gemm[T](alpha = alpha, beta = beta, transA = transA, transB = transB,
matrixB = matrixB, matrixC = matrixC)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy