com.intel.analytics.bigdl.nn.ops.CategoricalColHashBucket.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import scala.util.hashing.MurmurHash3
/**
* CategoricalColHashBucket operation can convert feature string to a Sparse/Dense Tensor
*
* SparseTensor if isSparse = true
* DenseTensor if isSparse = false
*
* the input is a Tensor[String] with shape batch * 1.
*
* This operation distributes your inputs into a finite number of buckets by hashing
*
* The Operation support the feature column with single-value or multi-value
*
* The output_id = Hash(input_feature_string) % hashBucketSize, ranging 0 to hashBucketSize-1
*
* The missing values in input Tensor can be represented by -1 for int and '''' for string
*
* @param hashBucketSize An Integer > 1. The number of buckets.
* @param strDelimiter The delimiter of feature string, default: ",".
* @param isSparse whether the output tensor is a sparseTensor, default: True.
* @tparam T Numeric type. Parameter tensor numeric type. Only support float/double now
*/
class CategoricalColHashBucket[T: ClassTag](
val hashBucketSize: Int,
val strDelimiter: String = ",",
val isSparse: Boolean = true
)(implicit ev: TensorNumeric[T])
extends Operation[Tensor[String], Tensor[Int], T] {
output = Tensor[Int]()
override def updateOutput(input: Tensor[String]): Tensor[Int] = {
val rows = input.size(dim = 1)
val indices0 = new ArrayBuffer[Int]()
val indices1 = new ArrayBuffer[Int]()
val values = new ArrayBuffer[Int]()
var i = 1
var max_fea_len = 0
while(i <= rows) {
val feaStrArr = input.valueAt(i, 1).split(strDelimiter)
max_fea_len = math.max(max_fea_len, feaStrArr.length)
var j = 0
while(j < feaStrArr.length) {
val hashVal = MurmurHash3.stringHash(feaStrArr(j)) % hashBucketSize match {
case v if v < 0 => v + hashBucketSize
case v => v
}
indices0 += i-1
indices1 += j
values += hashVal
j += 1
}
i += 1
}
val indices = Array(indices0.toArray, indices1.toArray)
val shape = Array(rows, max_fea_len)
output = isSparse match {
case true =>
Tensor.sparse(indices, values.toArray, shape)
case false =>
Tensor.dense(Tensor.sparse(indices, values.toArray, shape))
}
output
}
}
object CategoricalColHashBucket{
def apply[T: ClassTag](
hashBucketSize: Int,
strDelimiter: String = ",",
isSparse: Boolean = true)
(implicit ev: TensorNumeric[T])
: CategoricalColHashBucket[T] = new CategoricalColHashBucket[T](
hashBucketSize = hashBucketSize,
strDelimiter = strDelimiter,
isSparse = isSparse
)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy