com.intel.analytics.bigdl.nn.ops.Dilation2D.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.nn.Utils
import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.
*
* This layer takes a Table of two tensors as inputs, namely `input` and `filter`.
* The `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter`
* tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is
* processed independently of the others with its own structing fucntion. The `output` tensor
* has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output
* tensor depend on the `padding` algorithm. We currently only support the "NHWC" DataFormat.
*
* In detail, the grayscale morphological 2-D dilation is the max-sum correlation
*
* output[b, y, x, c] =
* max_{dy, dx} input[b,
* strides[1] * y + rates[1] * dy,
* strides[2] * x + rates[2] * dx,
* c] +
* filter[dy, dx, c]
*
* Max-pooling is a special case when the filter has size equal to the pooling kernel size and
* contains all zeros.
*
* Note on duality: The dilation of `input` by the `filter` is equal to the negation of the
* erosion of `-input` by the reflected `filter`.
*
*/
class Dilation2D[T: ClassTag, D: ClassTag](val strides: Array[Int],
val rates: Array[Int],
val padding: String)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T] {
output = Tensor[D]()
require(strides.length == 4, s"strides must have a length of 4, but got ${strides.length}")
require(rates.length == 4, s"rates must have a lenght of 4, but got ${rates.length}")
require(padding.toLowerCase() == "same" || padding.toLowerCase() == "valid",
s"padding must be one of same or valid, but got $padding")
private def getOutputSize(inputSize: Int, filterSize: Int, stride: Int, padding: String) = {
padding.toLowerCase() match {
case "valid" =>
val outputSize = (inputSize - filterSize + stride) / stride
(outputSize, 0, 0)
case "same" =>
val outputSize = (inputSize + stride - 1) / stride
val paddingNeeded = math.max(0, (outputSize - 1) * stride + filterSize - inputSize)
val padBefore = paddingNeeded / 2
val padAfter = paddingNeeded - padBefore
(outputSize, padBefore, padAfter)
}
}
private def dilationFloat(input: Tensor[Float], filter: Tensor[Float], output: Tensor[Float],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val filterRowsEff = filterRows + (filterRows - 1) * (rateRows - 1)
val filterColsEff = filterCols + (filterCols - 1) * (rateCols - 1)
val (outputRows, padTop, _) =
getOutputSize(inputRows, filterRowsEff, strideRows, padding)
val (outputCols, padLeft, _) =
getOutputSize(inputCols, filterColsEff, strideCols, padding)
output.resize(Array(batch, outputRows, outputCols, depth))
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outputData = output.storage().array()
val outputDataOffset = output.storageOffset() - 1
var b = 0
while(b < batch) {
var hOut = 0
while (hOut < outputRows) {
val hBeg = hOut * strideRows - padTop
var wOut = 0
while (wOut < outputCols) {
val wBeg = wOut * strideCols - padLeft
var d = 0
while (d < depth) {
var curVal: Float = Float.MinValue
var h = 0
while(h < filterRows) {
val hIn = hBeg + h * rateRows
if (hIn >= 0 && hIn < inputRows) {
var w = 0
while (w < filterCols) {
val wIn = wBeg + w * rateCols
if (wIn >= 0 && wIn < inputCols) {
val inputIndex = ((b * inputRows + hIn) * inputCols + wIn) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value = inputValue + filterValue
if (value > curVal) {
curVal = value
}
}
w += 1
}
}
h += 1
}
val outputIndex = ((b * outputRows + hOut) * outputCols + wOut) * depth + d
outputData(outputDataOffset + outputIndex) = curVal
d += 1
}
wOut += 1
}
hOut += 1
}
b += 1
}
}
private def dilationDouble(input: Tensor[Double], filter: Tensor[Double], output: Tensor[Double],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val filterRowsEff = filterRows + (filterRows - 1) * (rateRows - 1)
val filterColsEff = filterCols + (filterCols - 1) * (rateCols - 1)
val (outputRows, padTop, _) =
getOutputSize(inputRows, filterRowsEff, strideRows, padding)
val (outputCols, padLeft, _) =
getOutputSize(inputCols, filterColsEff, strideCols, padding)
output.resize(Array(batch, outputRows, outputCols, depth))
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outputData = output.storage().array()
val outputDataOffset = output.storageOffset() - 1
var b = 0
while(b < batch) {
var hOut = 0
while (hOut < outputRows) {
val hBeg = hOut * strideRows - padTop
var wOut = 0
while (wOut < outputCols) {
val wBeg = wOut * strideCols - padLeft
var d = 0
while (d < depth) {
var curVal: Double = Double.MinValue
var h = 0
while(h < filterRows) {
val hIn = hBeg + h * rateRows
if (hIn >= 0 && hIn < inputRows) {
var w = 0
while (w < filterCols) {
val wIn = wBeg + w * rateCols
if (wIn >= 0 && wIn < inputCols) {
val inputIndex = ((b * inputRows + hIn) * inputCols + wIn) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value = inputValue + filterValue
if (value > curVal) {
curVal = value
}
}
w += 1
}
}
h += 1
}
val outputIndex = ((b * outputRows + hOut) * outputCols + wOut) * depth + d
outputData(outputDataOffset + outputIndex) = curVal
d += 1
}
wOut += 1
}
hOut += 1
}
b += 1
}
}
override def updateOutput(inputs: Table): Tensor[D] = {
val input = inputs[Tensor[D]](1)
val filter = inputs[Tensor[D]](2)
require(input.dim() == 4, "input must have 4 dims")
require(filter.dim() == 3, "filter must have 3 dims")
val strideRows = strides(1)
val strideCols = strides(2)
val rateRows = rates(1)
val rateCols = rates(2)
if (ev2.getType() == FloatType) {
val inputTensor = input.asInstanceOf[Tensor[Float]]
val filterTensor = filter.asInstanceOf[Tensor[Float]]
val outputTensor = output.asInstanceOf[Tensor[Float]]
dilationFloat(inputTensor, filterTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else if (ev2.getType() == DoubleType) {
val inputTensor = input.asInstanceOf[Tensor[Double]]
val filterTensor = filter.asInstanceOf[Tensor[Double]]
val outputTensor = output.asInstanceOf[Tensor[Double]]
dilationDouble(inputTensor, filterTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else {
throw new IllegalArgumentException(s"does not support datatype ${ev2.getType()}")
}
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array(scala.reflect.classTag[T], scala.reflect.classTag[D]), Array(ev, ev2))
}
}
object Dilation2D {
def apply[T: ClassTag, D: ClassTag](strides: Array[Int], rates: Array[Int], padding: String)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): Dilation2D[T, D] =
new Dilation2D(strides, rates, padding)
}
private[bigdl] class Dilation2DBackpropFilter[T: ClassTag, D: ClassTag](
strides: Array[Int],
rates: Array[Int],
padding: String)(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T]{
output = Tensor[D]()
private def dilation2DBackpropFilterFloat(
input: Tensor[Float],
filter: Tensor[Float],
outBackprop: Tensor[Float],
filterBackprop: Tensor[Float],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val filterRowsEff = filterRows + (filterRows - 1) * (rateRows - 1)
val filterColsEff = filterCols + (filterCols - 1) * (rateCols - 1)
val (outputRows, padTop, _) =
Utils.getOutputSize(inputRows, filterRowsEff, strideRows, padding)
val (outputCols, padLeft, _) =
Utils.getOutputSize(inputCols, filterColsEff, strideCols, padding)
filterBackprop.resizeAs(filter)
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outBackpropData = outBackprop.storage().array()
val outBackpropDataOffset = outBackprop.storageOffset() - 1
val filterBackpropData = filterBackprop.storage().array()
val filterBackpropDataOffset = filterBackprop.storageOffset() - 1
var b = 0
while (b < batch) {
var h_out = 0
while (h_out < outputRows) {
val h_beg = h_out * strideRows - padTop
var w_out = 0
while (w_out < outputCols) {
val w_beg = w_out * strideCols - padLeft
var d = 0
while (d < depth) {
var cur_val = Float.MinValue
var h_max = 0
var w_max = 0
var h = 0
while (h < filterRows) {
val h_in = h_beg + h * rateRows
if (h_in >= 0 && h_in < inputRows) {
var w = 0
while (w < filterCols) {
val w_in = w_beg + w * rateCols
if (w_in >= 0 && w_in < inputCols) {
val inputIndex = ((b * inputRows + h_in) * inputCols + w_in) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value: Float = inputValue + filterValue
if (value > cur_val) {
cur_val = value
h_max = h
w_max = w
}
}
w += 1
}
}
h += 1
}
val filterBackPropIndex =
(h_max * filterCols + w_max) * depth + d
val outputBackPropIndex =
((b * outputRows + h_out) * outputCols + w_out) * depth + d
filterBackpropData(filterBackpropDataOffset + filterBackPropIndex) +=
outBackpropData(outBackpropDataOffset + outputBackPropIndex)
d += 1
}
w_out += 1
}
h_out += 1
}
b += 1
}
}
private def dilation2DBackpropFilterDouble(input: Tensor[Double],
filter: Tensor[Double],
outBackprop: Tensor[Double],
filterBackprop: Tensor[Double],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val filterRowsEff = filterRows + (filterRows - 1) * (rateRows - 1)
val filterColsEff = filterCols + (filterCols - 1) * (rateCols - 1)
val (outputRows, padTop, _) =
Utils.getOutputSize(inputRows, filterRowsEff, strideRows, padding)
val (outputCols, padLeft, _) =
Utils.getOutputSize(inputCols, filterColsEff, strideCols, padding)
filterBackprop.resizeAs(filter)
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outBackpropData = outBackprop.storage().array()
val outBackpropDataOffset = outBackprop.storageOffset() - 1
val filterBackpropData = filterBackprop.storage().array()
val filterBackpropDataOffset = filterBackprop.storageOffset() - 1
var b = 0
while (b < batch) {
var h_out = 0
while (h_out < outputRows) {
val h_beg = h_out * strideRows - padTop
var w_out = 0
while (w_out < outputCols) {
val w_beg = w_out * strideCols - padLeft
var d = 0
while (d < depth) {
var cur_val = Double.MinValue
var h_max = 0
var w_max = 0
var h = 0
while (h < filterRows) {
val h_in = h_beg + h * rateRows
if (h_in >= 0 && h_in < inputRows) {
var w = 0
while (w < filterCols) {
val w_in = w_beg + w * rateCols
if (w_in >= 0 && w_in < inputCols) {
val inputIndex = ((b * inputRows + h_in) * inputCols + w_in) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value: Double = inputValue + filterValue
if (value > cur_val) {
cur_val = value
h_max = h
w_max = w
}
}
w += 1
}
}
h += 1
}
val filterBackPropIndex =
(h_max * filterCols + w_max) * depth + d
val outputBackPropIndex =
((b * outputRows + h_out) * outputCols + w_out) * depth + d
filterBackpropData(filterBackpropDataOffset + filterBackPropIndex) +=
outBackpropData(outBackpropDataOffset + outputBackPropIndex)
d += 1
}
w_out += 1
}
h_out += 1
}
b += 1
}
}
override def updateOutput(inputs: Table): Tensor[D] = {
val input = inputs[Tensor[D]](1)
val filter = inputs[Tensor[D]](2)
val outBackprop = inputs[Tensor[D]](3)
require(input.dim() == 4, "input must have 4 dims")
require(filter.dim() == 3, "filter must have 3 dims")
val strideRows = strides(1)
val strideCols = strides(2)
val rateRows = rates(1)
val rateCols = rates(2)
if (ev2.getType() == FloatType) {
val inputTensor = input.asInstanceOf[Tensor[Float]]
val filterTensor = filter.asInstanceOf[Tensor[Float]]
val outBackpropTensor = outBackprop.asInstanceOf[Tensor[Float]]
val outputTensor = output.asInstanceOf[Tensor[Float]]
dilation2DBackpropFilterFloat(inputTensor, filterTensor, outBackpropTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else if (ev2.getType() == DoubleType) {
val inputTensor = input.asInstanceOf[Tensor[Double]]
val filterTensor = filter.asInstanceOf[Tensor[Double]]
val outBackpropTensor = output.asInstanceOf[Tensor[Double]]
val outputTensor = output.asInstanceOf[Tensor[Double]]
dilation2DBackpropFilterDouble(inputTensor, filterTensor, outBackpropTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else {
throw new IllegalArgumentException(s"does not support datatype ${ev2.getType()}")
}
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array(scala.reflect.classTag[T], scala.reflect.classTag[D]), Array(ev, ev2))
}
}
private[bigdl] object Dilation2DBackpropFilter {
def apply[T: ClassTag, D: ClassTag](strides: Array[Int], rates: Array[Int], padding: String)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): Dilation2DBackpropFilter[T, D] =
new Dilation2DBackpropFilter(strides, rates, padding)
}
private[bigdl] class Dilation2DBackpropInput[T: ClassTag, D: ClassTag](strides: Array[Int],
rates: Array[Int],
padding: String)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T]{
output = Tensor[D]
private def dilationBackpropInputFloat(input: Tensor[Float],
filter: Tensor[Float],
outBackprop: Tensor[Float],
inputBackprop: Tensor[Float],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val filterRowsEff = filterRows + (filterRows - 1) * (rateRows - 1)
val filterColsEff = filterCols + (filterCols - 1) * (rateCols - 1)
val (outputRows, padTop, _) =
Utils.getOutputSize(inputRows, filterRowsEff, strideRows, padding)
val (outputCols, padLeft, _) =
Utils.getOutputSize(inputCols, filterColsEff, strideCols, padding)
inputBackprop.resizeAs(input)
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outBackpropData = outBackprop.storage().array()
val outBackpropDataOffset = outBackprop.storageOffset() - 1
val inputBackpropData = inputBackprop.storage().array()
val inputBackpropDataOffset = inputBackprop.storageOffset() - 1
var b = 0
while (b < batch) {
var h_out = 0
while (h_out < outputRows) {
val h_beg = h_out * strideRows - padTop
var w_out = 0
while (w_out < outputCols) {
val w_beg = w_out * strideCols - padLeft
var d = 0
while (d < depth) {
var cur_val = Float.MinValue
var h_in_max = if (h_beg < 0) 0 else h_beg
var w_in_max = if (w_beg < 0) 0 else w_beg
var h = 0
while (h < filterRows) {
val h_in = h_beg + h * rateRows
if (h_in >= 0 && h_in < inputRows) {
var w = 0
while (w < filterCols) {
val w_in = w_beg + w * rateCols
if (w_in >= 0 && w_in < inputCols) {
val inputIndex = ((b * inputRows + h_in) * inputCols + w_in) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value: Float = inputValue + filterValue
if (value > cur_val) {
cur_val = value
h_in_max = h_in
w_in_max = w_in
}
}
w += 1
}
}
h += 1
}
val inputBackPropIndex =
((b * inputRows + h_in_max) * inputCols + w_in_max) * depth + d
val outputBackPropIndex =
((b * outputRows + h_out) * outputCols + w_out) * depth + d
inputBackpropData(inputBackpropDataOffset + inputBackPropIndex) +=
outBackpropData(outBackpropDataOffset + outputBackPropIndex)
d += 1
}
w_out += 1
}
h_out += 1
}
b += 1
}
}
private def dilationBackpropInputDouble(input: Tensor[Double],
filter: Tensor[Double],
outBackprop: Tensor[Double],
inputBackprop: Tensor[Double],
strideRows: Int, strideCols: Int,
rateRows: Int, rateCols: Int) = {
val batch = input.size(1)
val inputRows = input.size(2)
val inputCols = input.size(3)
val depth = input.size(4)
val filterRows = filter.size(1)
val filterCols = filter.size(2)
val outputRows = outBackprop.size(2)
val outputCols = outBackprop.size(3)
val (padTop, padLeft) = padding.toLowerCase() match {
case "same" =>
val top = (outputRows - inputRows) / 2
val left = (outputCols - inputCols) / 2
(top, left)
case "valid" =>
(0, 0)
}
inputBackprop.resizeAs(input)
val inputData = input.storage().array()
val inputDataOffset = input.storageOffset() - 1
val filterData = filter.storage().array()
val filterDataOffset = filter.storageOffset() - 1
val outBackpropData = outBackprop.storage().array()
val outBackpropDataOffset = outBackprop.storageOffset() - 1
val inputBackpropData = inputBackprop.storage().array()
val inputBackpropDataOffset = inputBackprop.storageOffset() - 1
var b = 0
while (b < batch) {
var h_out = 0
while (h_out < outputRows) {
val h_beg = h_out * strideRows - padTop
var w_out = 0
while (w_out < outputCols) {
val w_beg = w_out * strideCols - padLeft
var d = 0
while (d < depth) {
var cur_val = Double.MinValue
var h_in_max = if (h_beg < 0) 0 else h_beg
var w_in_max = if (w_beg < 0) 0 else w_beg
var h = 0
while (h < filterRows) {
val h_in = h_beg + h * rateRows
if (h_in >= 0 && h_in < inputRows) {
var w = 0
while (w < filterCols) {
val w_in = w_beg + w * rateCols
if (w_in >= 0 && w_in < inputCols) {
val inputIndex = ((b * inputRows + h_in) * inputCols + w_in) * depth + d
val inputValue = inputData(inputDataOffset + inputIndex)
val filterIndex = (h * filterCols + w) * depth + d
val filterValue = filterData(filterDataOffset + filterIndex)
val value: Double = inputValue + filterValue
if (value > cur_val) {
cur_val = value
h_in_max = h_in
w_in_max = w_in
}
}
w += 1
}
}
h += 1
}
val inputBackPropIndex =
((b * inputRows + h_in_max) * inputCols + w_in_max) * depth + d
val outputBackPropIndex =
((b * outputRows + h_out) * outputCols + w_out) * depth + d
inputBackpropData(inputBackpropDataOffset + inputBackPropIndex) +=
outBackpropData(outBackpropDataOffset + outputBackPropIndex)
d += 1
}
w_out += 1
}
h_out += 1
}
b += 1
}
}
override def updateOutput(inputs: Table): Tensor[D] = {
val input = inputs[Tensor[D]](1)
val filter = inputs[Tensor[D]](2)
val outBackprop = inputs[Tensor[D]](3)
require(input.dim() == 4, "input must have 4 dims")
require(filter.dim() == 3, "filter must have 3 dims")
val strideRows = strides(1)
val strideCols = strides(2)
val rateRows = rates(1)
val rateCols = rates(2)
if (ev2.getType() == FloatType) {
val inputTensor = input.asInstanceOf[Tensor[Float]]
val filterTensor = filter.asInstanceOf[Tensor[Float]]
val outBackpropTensor = outBackprop.asInstanceOf[Tensor[Float]]
val outputTensor = output.asInstanceOf[Tensor[Float]]
dilationBackpropInputFloat(inputTensor, filterTensor, outBackpropTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else if (ev2.getType() == DoubleType) {
val inputTensor = input.asInstanceOf[Tensor[Double]]
val filterTensor = filter.asInstanceOf[Tensor[Double]]
val outBackpropTensor = output.asInstanceOf[Tensor[Double]]
val outputTensor = output.asInstanceOf[Tensor[Double]]
dilationBackpropInputDouble(inputTensor, filterTensor, outBackpropTensor, outputTensor,
strideRows, strideCols, rateRows, rateCols)
} else {
throw new IllegalArgumentException(s"does not support datatype ${ev2.getType()}")
}
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array(scala.reflect.classTag[T], scala.reflect.classTag[D]), Array(ev, ev2))
}
}
private[bigdl] object Dilation2DBackpropInput {
def apply[T: ClassTag, D: ClassTag](strides: Array[Int], rates: Array[Int], padding: String)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): Dilation2DBackpropInput[T, D] =
new Dilation2DBackpropInput(strides, rates, padding)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy