com.intel.analytics.bigdl.nn.ops.Gather.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.{IntType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Gather slices from first input tensor according to the second input tensor.
* Input should be two tensors, the first one is the tensor which to gather values;
* the second one is Index tensor.
*/
class Gather[T: ClassTag, D: ClassTag](
var dim: Int = 1)(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T]{
output = Tensor[D]()
protected val intBuffer = Tensor[Int]()
override def updateOutput(input: Table): Tensor[D] = {
val inputTensor = input[Tensor[D]](1)
val input2 = input[Tensor[_]](2)
// support floatType indices.
val indices = if (input2.getType() == IntType) {
input2.asInstanceOf[Tensor[Int]]
} else {
intBuffer.resizeAs(input2)
input2.cast[Int](intBuffer)
intBuffer
}
val inputSizes = inputTensor.size()
val inputDim = inputTensor.dim() // data batch dim
dim = if (dim <= 0) {
inputDim + dim
}
else dim
require(dim >= 1 && dim <= inputDim, s"Invalid position: $dim. " +
s"input:dim() is $inputTensor, input feature map dim (numInputDims) is $inputDim.")
// set output shape
val indicesSize = indices.size()
val outputSizes = if (indices.isScalar) {
inputSizes.slice(0, dim-1) ++ Array(1) ++ inputSizes.slice(dim, inputSizes.length)
} else {
inputSizes.slice(0, dim-1) ++ indicesSize ++ inputSizes.slice(dim, inputSizes.length)
}
// set the insert position in output to one-dim array
output.resize(inputSizes.slice(0, dim-1)++
Array(indices.nElement())++
inputSizes.slice(dim, inputSizes.length))
// copy selected element to the insert position
indices.resize(indices.nElement())
var i = 0
while (i < indices.nElement()) {
val index = indices.valueAt(i + 1)
require(index < inputSizes(dim - 1),
s"index should smaller than ${inputSizes(dim - 1)}, but got $index")
output.select(dim, i + 1).copy(inputTensor.select(dim, index + 1))
i += 1
}
// resize the output to expected shape
indices.resize(indicesSize)
output.resize(outputSizes)
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
override def clearState() : this.type = {
super.clearState()
intBuffer.set()
this
}
}
object Gather {
def apply[T: ClassTag, D: ClassTag](
dim: Int = 1
)(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]):
Gather[T, D] = new Gather(dim)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy