com.intel.analytics.bigdl.nn.ops.NotEqual.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.google.protobuf.ByteString
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
class NotEqual[T: ClassTag]()
(implicit ev: TensorNumeric[T]) extends Operation[Table, Tensor[Boolean], T] {
output = Activity.allocate[Tensor[Boolean], Boolean]()
override def updateOutput(input: Table): Tensor[Boolean] = {
output.resizeAs(input(1))
input[Tensor[_]](1).getType() match {
case FloatType =>
output.zipWith[Float, Float](
input[Tensor[Float]](1),
input[Tensor[Float]](2),
(a, b) => a != b)
case BooleanType =>
output.zipWith[Boolean, Boolean](
input[Tensor[Boolean]](1),
input[Tensor[Boolean]](2),
(a, b) => a != b)
case DoubleType =>
output.zipWith[Double, Double](
input[Tensor[Double]](1),
input[Tensor[Double]](2),
(a, b) => a != b)
case CharType =>
output.zipWith[Char, Char](
input[Tensor[Char]](1),
input[Tensor[Char]](2),
(a, b) => a != b)
case StringType =>
output.zipWith[ByteString, ByteString](
input[Tensor[ByteString]](1),
input[Tensor[ByteString]](2),
(a, b) => a != b)
case LongType =>
output.zipWith[Long, Long](
input[Tensor[Long]](1),
input[Tensor[Long]](2),
(a, b) => a != b)
case ShortType =>
output.zipWith[Short, Short](
input[Tensor[Short]](1),
input[Tensor[Short]](2),
(a, b) => a != b)
case IntType =>
output.zipWith[Int, Int](
input[Tensor[Int]](1),
input[Tensor[Int]](2),
(a, b) => a != b)
case _ => throw new RuntimeException("Unsupported tensor type")
}
output
}
}
object NotEqual {
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): Operation[Activity, Activity, T]
= ModuleToOperation[T](new NotEqual())
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy