com.intel.analytics.bigdl.nn.ops.SegmentSum.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Computes the sum along segments of a tensor.
*/
class SegmentSum[T: ClassTag]()(implicit ev: TensorNumeric[T])
extends Operation[Table, Tensor[T], T]{
def updateOutput(inputs: Table): Tensor[T] = {
val x = inputs[Tensor[T]](1)
val y = inputs[Tensor[Int]](2) // zero-indices
require(y.nDimension() == 1, "segment ids should be 1D tensor")
require(y.size(1) == x.size(1), "segment ids should be the same size as" +
s" first dimension of input, excepted ${x.size(1)}, but got ${y.size(1)}")
val newSize = x.size()
newSize(0) = y.valueAt(y.nElement()) + 1
output.resize(newSize).zero()
var i = 0
while(i < y.nElement()) {
output.select(1, y.valueAt(i + 1) + 1).add(x.select(1, i + 1))
i += 1
}
output
}
}
object SegmentSum {
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): SegmentSum[T] = {
new SegmentSum()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy