All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.nn.ops.TensorOp.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.intel.analytics.bigdl.nn.ops

import com.google.protobuf.ByteString
import com.intel.analytics.bigdl.serialization.Bigdl
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, DataType}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Table, Util}
import com.intel.analytics.bigdl.utils.serializer.{DeserializeContext, SerializeContext}
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import org.apache.commons.lang3.SerializationUtils

import scala.reflect.ClassTag
import scala.reflect.runtime.universe

/**
 * [[TensorOp]] is an [[Operation]] with `Tensor[T]-formatted `input and output,
 * which provides shortcuts to build Operations for `tensor transformation` by closures.
 * 

* [[TensorOp]] will make a deep copy of input Tensor before transformation, * so transformation will take no side effect. For now, `SparseTensors` are not supported. *

* Chained feature is supported in [[TensorOp]]. * And common tensor actions are provided with a chained style. *

* For instance: * {{{ * one case: * val (transformer1, transformer2, transformer3) = ... * val (op1, op2, op3) = (TensorOp[Float](transformer1), .., ..) * val op = op1 -> op2 -> op3 * `equals` * val op = TensorOp[Float]((t: Tensor[Float], ev: TensorNumeric[Float]) => { * transformer3(transformer2(transformer1(t, ev), ev), ev) * }) * * another case: * val op = (TensorOp[Float]() * 2.3f + 1.23f) / 1.11f - 0.66f * `equals` * val transformer = (t: Tensor[T], _) => t.mul(2.3f).add(1.23f).div(1.11f).sub(0.66f) * val op = TensorOp[Float](transformer) * }}} * * @param transformer closure of tensor transformation * @tparam T Numeric type */ class TensorOp[T: ClassTag] private( private[bigdl] val transformer: (Tensor[T], TensorNumeric[T]) => Tensor[T]) (implicit ev: TensorNumeric[T]) extends Operation[Tensor[T], Tensor[T], T] { private lazy val buffer: Tensor[T] = Tensor[T]() // TODO: support SparseTensor final override def updateOutput(input: Tensor[T]): Tensor[T] = { buffer.resizeAs(input).copy(input) output = transformer(buffer, ev) output } // scalastyle:off final def ->(next: TensorOp[T]): TensorOp[T] = { val chained = (in: Tensor[T], ev: TensorNumeric[T]) => { next.transformer(transformer(in, ev), ev) } new TensorOp(chained) } /** * append additional TensorOp to do element-wise `f(x) = x + a` * * @param value T a * @return TensorOp[T] */ final def +(value: T): TensorOp[T] = this -> TensorOp.add(value) /** * append additional TensorOp to do element-wise tensor addition * * @param tensor Tensor[T] * @return TensorOp[T] */ final def +(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.add(tensor) /** * build a TensorOp to do element-wise `f(x) = x - a` * * @param value T a * @return TensorOp[T] */ final def -(value: T): TensorOp[T] = this -> TensorOp.sub(value) /** * build a TensorOp to do element-wise tensor subtraction * * @param tensor Tensor[T] * @return TensorOp[T] */ final def -(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.sub(tensor) /** * build a TensorOp to do element-wise `f(x) = a * x` * * @param value T a * @return TensorOp[T] */ final def *(value: T): TensorOp[T] = this -> TensorOp.mul(value) /** * build a TensorOp to do element-wise multiplication * * @param tensor Tensor[T] * @return TensorOp[T] */ final def *(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.mul(tensor) /** * build a TensorOp to do element-wise `f(x) = x / a` * * @param value T a * @return TensorOp[T] */ final def /(value: T): TensorOp[T] = this -> TensorOp.div(value) /** * build a TensorOp to do element-wise division * * @param tensor Tensor[T] * @return TensorOp[T] */ final def /(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.div(tensor) /** * build a TensorOp to do element-wise `f(x) = x ^ n` * * @param n the order of power * @return TensorOp[T] */ final def **(n: T): TensorOp[T] = this -> TensorOp.pow(n) /** * build a TensorOp to do element-wise `f(x) = if (x>=a) 1; else 0` * * @param value Double a * @return TensorOp[T] */ final def >=(value: Double): TensorOp[T] = this -> TensorOp.ge(value) /** * build a TensorOp to do element-wise `f(x) = if (x==a) 1; else 0` * * @param value T a * @return TensorOp[T] */ final def ==(value: T): TensorOp[T] = this -> TensorOp.eq(value) // scalastyle:on /** * build a TensorOp to do matrix transposition for 2d Tensors * * @return TensorOp[T] */ final def t: TensorOp[T] = this -> TensorOp.t() /** * build a TensorOp to do element-wise `f(x) = sqrt(x)` * * @return TensorOp[T] */ final def sqrt: TensorOp[T] = this -> TensorOp.sqrt() /** * build a TensorOp to do element-wise `f(x) = log(x)` * * @return TensorOp[T] */ final def log: TensorOp[T] = this -> TensorOp.log() /** * build a TensorOp to do element-wise `f(x) = log(x + 1)` * * @return TensorOp[T] */ final def log1p: TensorOp[T] = this -> TensorOp.log1p() /** * build a TensorOp to do element-wise `f(x) = exp(x)` * * @return TensorOp[T] */ final def exp: TensorOp[T] = this -> TensorOp.exp() /** * build a TensorOp to do element-wise `floor` * * @return TensorOp[T] */ final def floor: TensorOp[T] = this -> TensorOp.floor() /** * build a TensorOp to do element-wise `ceil` * * @return TensorOp[T] */ final def ceil: TensorOp[T] = this -> TensorOp.ceil() /** * build a TensorOp to do element-wise `f(x) = 1 / x` * * @return TensorOp[T] */ final def inv: TensorOp[T] = this -> TensorOp.inv() /** * build a TensorOp to do element-wise `f(x) = -x` * * @return TensorOp[T] */ final def neg: TensorOp[T] = this -> TensorOp.negative() /** * build a TensorOp to do element-wise `f(x) = |x|` * * @return TensorOp[T] */ final def abs: TensorOp[T] = this -> TensorOp.abs() /** * build a TensorOp to do element-wise `f(x) = tanh(x)` * * @return TensorOp[T] */ final def tanh: TensorOp[T] = this -> TensorOp.tanh() /** * build a TensorOp to do element-wise `f(x) = if (x>0) 1; if (x=0) 0; else -1` * * @return TensorOp[T] */ final def sign: TensorOp[T] = this -> TensorOp.sign() /** * build a TensorOp to do element-wise `f(x) = 1 / (1 + exp(-x))` * * @return TensorOp[T] */ final def sigmoid: TensorOp[T] = this -> TensorOp.sigmoid() } object TensorOp { // register custom DataConverter for transformer DataConverter.registerConverter( "(com.intel.analytics.bigdl.tensor.Tensor[T], " + "com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric[T]) => " + "com.intel.analytics.bigdl.tensor.Tensor[T]", new DataConverter { override def getAttributeValue[T: ClassTag]( context: DeserializeContext, attribute: Bigdl.AttrValue )(implicit ev: TensorNumeric[T]): AnyRef = { val any = attribute.getCustomValue val bytes = any.getValue.toByteArray // using Util.deserialize instead of SerializationUtils.deserialize val wrapper = Util.deserialize[ClosureWrapper[T]](bytes) wrapper.closure } override def setAttributeValue[T: ClassTag]( context: SerializeContext[T], attributeBuilder: AttrValue.Builder, value: scala.Any, valueType: universe.Type )(implicit ev: TensorNumeric[T]): Unit = { attributeBuilder.setDataType(DataType.CUSTOM) val wrapper = new ClosureWrapper( value.asInstanceOf[(Tensor[T], TensorNumeric[T]) => Tensor[T]]) val bytes = SerializationUtils.serialize(wrapper) val anyBuilder = com.google.protobuf.Any.newBuilder() anyBuilder.setValue(ByteString.copyFrom(bytes)) attributeBuilder.setCustomValue(anyBuilder.build()) } } ) // Class Wrapper for transformer(closure) private class ClosureWrapper[T: ClassTag]( val closure: (Tensor[T], TensorNumeric[T]) => Tensor[T]) (implicit ev: TensorNumeric[T]) extends Serializable /** * build a TensorOp with user-defined transformer * * @param transformer user-defined tensor transformer * @tparam T type param of TensorOp * @return TensorOp[T] */ def apply[T: ClassTag](transformer: (Tensor[T], TensorNumeric[T]) => Tensor[T] )(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp(transformer) } /** * build a TensorOp with identity transformer * * @tparam T type param of TensorOp * @return TensorOp[T] */ def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t) } /** * build a TensorOp to do element-wise `f(x) = x + a` * * @param value T a * @tparam T type param of TensorOp * @return TensorOp[T] */ def add[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.add(value)) } /** * build a TensorOp to do element-wise tensor addition * * @param tensor Tensor[T] * @tparam T type param of TensorOp * @return TensorOp[T] */ def add[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.add(tensor)) } /** * build a TensorOp to do element-wise `f(x) = x - a` * * @param value T a * @tparam T type param of TensorOp * @return TensorOp[T] */ def sub[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.sub(value)) } /** * build a TensorOp to do element-wise tensor subtraction * * @param tensor Tensor[T] * @tparam T type param of TensorOp * @return TensorOp[T] */ def sub[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.sub(tensor)) } /** * build a TensorOp to do element-wise `f(x) = a * x` * * @param value T a * @tparam T type param of TensorOp * @return TensorOp[T] */ def mul[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.mul(value)) } /** * build a TensorOp to do element-wise multiplication * * @param tensor Tensor[T] * @tparam T type param of TensorOp * @return TensorOp[T] */ def mul[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp[T]((t: Tensor[T], _) => t.cmul(tensor)) } /** * build a TensorOp to do element-wise `f(x) = x / a` * * @param value T a * @tparam T type param of TensorOp * @return TensorOp[T] */ def div[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.div(value)) } /** * build a TensorOp to do element-wise division * * @param tensor Tensor[T] * @tparam T type param of TensorOp * @return TensorOp[T] */ def div[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.div(tensor)) } /** * build a TensorOp to do element-wise `f(x) = if (x>=a) 1; else 0` * * @param value Double a * @tparam T type param of TensorOp * @return TensorOp[T] */ def ge[T: ClassTag](value: Double)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.ge(t, value)) } /** * build a TensorOp to do element-wise `f(x) = if (x==a) 1; else 0` * * @param value T a * @tparam T type param of TensorOp * @return TensorOp[T] */ def eq[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.eq(t, value)) } /** * build a TensorOp to do matrix transposition for 2d Tensors * * @tparam T type param of TensorOp * @return TensorOp[T] */ def t[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.t()) } /** * build a TensorOp to do element-wise `f(x) = sqrt(x)` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def sqrt[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.sqrt()) } /** * build a TensorOp to do element-wise `f(x) = log(x)` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def log[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.log()) } /** * build a TensorOp to do element-wise `f(x) = log(x + 1)` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def log1p[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.log1p()) } /** * build a TensorOp to do element-wise `f(x) = exp(x)` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def exp[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.exp()) } /** * build a TensorOp to do element-wise `f(x) = x ^ n` * * @param n the order of power * @tparam T type param of TensorOp * @return TensorOp[T] */ def pow[T: ClassTag](n: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.pow(n)) } /** * build a TensorOp to do element-wise `f(x) = x ^ 2` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def square[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.square()) } /** * build a TensorOp to do element-wise `floor` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def floor[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.floor()) } /** * build a TensorOp to do element-wise `ceil` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def ceil[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.ceil()) } /** * build a TensorOp to do element-wise `f(x) = 1 / x` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def inv[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.inv()) } /** * build a TensorOp to do element-wise `f(x) = -x` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def negative[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.negative(t)) } /** * build a TensorOp to do element-wise `f(x) = |x|` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def abs[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.abs()) } /** * build a TensorOp to do element-wise `f(x) = tanh(x)` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def tanh[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.tanh()) } /** * build a TensorOp to do element-wise `f(x) = if (x>0) 1; if (x=0) 0; else -1` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def sign[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], _) => t.sign()) } /** * build a TensorOp to do element-wise `f(x) = 1 / (1 + exp(-x))` * * @tparam T type param of TensorOp * @return TensorOp[T] */ def sigmoid[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = { new TensorOp((t: Tensor[T], ev: TensorNumeric[T]) => { t.negative(t).exp() .add(ev.one) .inv() }) } } /** * Select and copy a Tensor from a [[Table]] with a key. * And do tensor transformation if [[transformer]] is defined. * If [[isTensorKey]] is `false`, the real key is the value of [[keyTensor]]. * Otherwise, the real key is [[keyTensor]]. * * @param keyTensor the key or tensor wrapper of key, must be a scalar tensor * @param isTensorKey whether the key is a scalar tensor or a primitive value, default true * @param transformer user-defined transformer, default(null) means do nothing * @tparam T Numeric type */ class SelectTensor[T: ClassTag] private( private val keyTensor: Tensor[_], private val isTensorKey: Boolean = true, private val transformer: TensorOp[T] = null) (implicit ev: TensorNumeric[T]) extends Operation[Table, Tensor[T], T] { override def updateOutput(input: Table): Tensor[T] = { val _key = if (isTensorKey) keyTensor else keyTensor.value() val selected = input[Tensor[T]](_key) if (transformer != null) { output = transformer.updateOutput(selected) } else { // TODO: support SparseTensor.copy output.resizeAs(selected).copy(selected) } output } } object SelectTensor { /** * Build a `SelectTensor` Instance with a keyTensor. * * @param keyTensor the key or tensor wrapper of key, must be a scalar tensor * @param isTensorKey whether the key is a scalar tensor or a primitive value, default true * @param transformer user-defined transformer, default(null) means do nothing * @tparam T Numeric type * @return a `SelectTensor` Instance */ def apply[T: ClassTag]( keyTensor: Tensor[_], isTensorKey: Boolean = true, transformer: TensorOp[T] = null) (implicit ev: TensorNumeric[T]): SelectTensor[T] = { require(keyTensor.isScalar, "The key must be a Scalar Tensor!") new SelectTensor[T](keyTensor, isTensorKey, transformer) } /** * Build a `SelectTensor` Instance with a non-Tensor key with Type [[D]]. * * @param key the key, must be able to be wrapped by Tensor * @tparam T Numeric type * @tparam D type of key, must be supported by TensorDataType * @return a `SelectTensor` Instance */ def apply[T: ClassTag, D: ClassTag](key: D) (implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): SelectTensor[T] = { val keyTensor = Tensor.scalar(key) new SelectTensor[T](keyTensor, false, null) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy