com.intel.analytics.bigdl.nn.ops.TensorOp.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.google.protobuf.ByteString
import com.intel.analytics.bigdl.serialization.Bigdl
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, DataType}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Table, Util}
import com.intel.analytics.bigdl.utils.serializer.{DeserializeContext, SerializeContext}
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import org.apache.commons.lang3.SerializationUtils
import scala.reflect.ClassTag
import scala.reflect.runtime.universe
/**
* [[TensorOp]] is an [[Operation]] with `Tensor[T]-formatted `input and output,
* which provides shortcuts to build Operations for `tensor transformation` by closures.
*
* [[TensorOp]] will make a deep copy of input Tensor before transformation,
* so transformation will take no side effect. For now, `SparseTensors` are not supported.
*
* Chained feature is supported in [[TensorOp]].
* And common tensor actions are provided with a chained style.
*
* For instance:
* {{{
* one case:
* val (transformer1, transformer2, transformer3) = ...
* val (op1, op2, op3) = (TensorOp[Float](transformer1), .., ..)
* val op = op1 -> op2 -> op3
* `equals`
* val op = TensorOp[Float]((t: Tensor[Float], ev: TensorNumeric[Float]) => {
* transformer3(transformer2(transformer1(t, ev), ev), ev)
* })
*
* another case:
* val op = (TensorOp[Float]() * 2.3f + 1.23f) / 1.11f - 0.66f
* `equals`
* val transformer = (t: Tensor[T], _) => t.mul(2.3f).add(1.23f).div(1.11f).sub(0.66f)
* val op = TensorOp[Float](transformer)
* }}}
*
* @param transformer closure of tensor transformation
* @tparam T Numeric type
*/
class TensorOp[T: ClassTag] private(
private[bigdl] val transformer: (Tensor[T], TensorNumeric[T]) => Tensor[T])
(implicit ev: TensorNumeric[T]) extends Operation[Tensor[T], Tensor[T], T] {
private lazy val buffer: Tensor[T] = Tensor[T]()
// TODO: support SparseTensor
final override def updateOutput(input: Tensor[T]): Tensor[T] = {
buffer.resizeAs(input).copy(input)
output = transformer(buffer, ev)
output
}
// scalastyle:off
final def ->(next: TensorOp[T]): TensorOp[T] = {
val chained = (in: Tensor[T], ev: TensorNumeric[T]) => {
next.transformer(transformer(in, ev), ev)
}
new TensorOp(chained)
}
/**
* append additional TensorOp to do element-wise `f(x) = x + a`
*
* @param value T a
* @return TensorOp[T]
*/
final def +(value: T): TensorOp[T] = this -> TensorOp.add(value)
/**
* append additional TensorOp to do element-wise tensor addition
*
* @param tensor Tensor[T]
* @return TensorOp[T]
*/
final def +(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.add(tensor)
/**
* build a TensorOp to do element-wise `f(x) = x - a`
*
* @param value T a
* @return TensorOp[T]
*/
final def -(value: T): TensorOp[T] = this -> TensorOp.sub(value)
/**
* build a TensorOp to do element-wise tensor subtraction
*
* @param tensor Tensor[T]
* @return TensorOp[T]
*/
final def -(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.sub(tensor)
/**
* build a TensorOp to do element-wise `f(x) = a * x`
*
* @param value T a
* @return TensorOp[T]
*/
final def *(value: T): TensorOp[T] = this -> TensorOp.mul(value)
/**
* build a TensorOp to do element-wise multiplication
*
* @param tensor Tensor[T]
* @return TensorOp[T]
*/
final def *(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.mul(tensor)
/**
* build a TensorOp to do element-wise `f(x) = x / a`
*
* @param value T a
* @return TensorOp[T]
*/
final def /(value: T): TensorOp[T] = this -> TensorOp.div(value)
/**
* build a TensorOp to do element-wise division
*
* @param tensor Tensor[T]
* @return TensorOp[T]
*/
final def /(tensor: Tensor[T]): TensorOp[T] = this -> TensorOp.div(tensor)
/**
* build a TensorOp to do element-wise `f(x) = x ^ n`
*
* @param n the order of power
* @return TensorOp[T]
*/
final def **(n: T): TensorOp[T] = this -> TensorOp.pow(n)
/**
* build a TensorOp to do element-wise `f(x) = if (x>=a) 1; else 0`
*
* @param value Double a
* @return TensorOp[T]
*/
final def >=(value: Double): TensorOp[T] = this -> TensorOp.ge(value)
/**
* build a TensorOp to do element-wise `f(x) = if (x==a) 1; else 0`
*
* @param value T a
* @return TensorOp[T]
*/
final def ==(value: T): TensorOp[T] = this -> TensorOp.eq(value)
// scalastyle:on
/**
* build a TensorOp to do matrix transposition for 2d Tensors
*
* @return TensorOp[T]
*/
final def t: TensorOp[T] = this -> TensorOp.t()
/**
* build a TensorOp to do element-wise `f(x) = sqrt(x)`
*
* @return TensorOp[T]
*/
final def sqrt: TensorOp[T] = this -> TensorOp.sqrt()
/**
* build a TensorOp to do element-wise `f(x) = log(x)`
*
* @return TensorOp[T]
*/
final def log: TensorOp[T] = this -> TensorOp.log()
/**
* build a TensorOp to do element-wise `f(x) = log(x + 1)`
*
* @return TensorOp[T]
*/
final def log1p: TensorOp[T] = this -> TensorOp.log1p()
/**
* build a TensorOp to do element-wise `f(x) = exp(x)`
*
* @return TensorOp[T]
*/
final def exp: TensorOp[T] = this -> TensorOp.exp()
/**
* build a TensorOp to do element-wise `floor`
*
* @return TensorOp[T]
*/
final def floor: TensorOp[T] = this -> TensorOp.floor()
/**
* build a TensorOp to do element-wise `ceil`
*
* @return TensorOp[T]
*/
final def ceil: TensorOp[T] = this -> TensorOp.ceil()
/**
* build a TensorOp to do element-wise `f(x) = 1 / x`
*
* @return TensorOp[T]
*/
final def inv: TensorOp[T] = this -> TensorOp.inv()
/**
* build a TensorOp to do element-wise `f(x) = -x`
*
* @return TensorOp[T]
*/
final def neg: TensorOp[T] = this -> TensorOp.negative()
/**
* build a TensorOp to do element-wise `f(x) = |x|`
*
* @return TensorOp[T]
*/
final def abs: TensorOp[T] = this -> TensorOp.abs()
/**
* build a TensorOp to do element-wise `f(x) = tanh(x)`
*
* @return TensorOp[T]
*/
final def tanh: TensorOp[T] = this -> TensorOp.tanh()
/**
* build a TensorOp to do element-wise `f(x) = if (x>0) 1; if (x=0) 0; else -1`
*
* @return TensorOp[T]
*/
final def sign: TensorOp[T] = this -> TensorOp.sign()
/**
* build a TensorOp to do element-wise `f(x) = 1 / (1 + exp(-x))`
*
* @return TensorOp[T]
*/
final def sigmoid: TensorOp[T] = this -> TensorOp.sigmoid()
}
object TensorOp {
// register custom DataConverter for transformer
DataConverter.registerConverter(
"(com.intel.analytics.bigdl.tensor.Tensor[T], " +
"com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric[T]) => " +
"com.intel.analytics.bigdl.tensor.Tensor[T]",
new DataConverter {
override def getAttributeValue[T: ClassTag](
context: DeserializeContext,
attribute: Bigdl.AttrValue
)(implicit ev: TensorNumeric[T]): AnyRef = {
val any = attribute.getCustomValue
val bytes = any.getValue.toByteArray
// using Util.deserialize instead of SerializationUtils.deserialize
val wrapper = Util.deserialize[ClosureWrapper[T]](bytes)
wrapper.closure
}
override def setAttributeValue[T: ClassTag](
context: SerializeContext[T],
attributeBuilder: AttrValue.Builder,
value: scala.Any,
valueType: universe.Type
)(implicit ev: TensorNumeric[T]): Unit = {
attributeBuilder.setDataType(DataType.CUSTOM)
val wrapper = new ClosureWrapper(
value.asInstanceOf[(Tensor[T], TensorNumeric[T]) => Tensor[T]])
val bytes = SerializationUtils.serialize(wrapper)
val anyBuilder = com.google.protobuf.Any.newBuilder()
anyBuilder.setValue(ByteString.copyFrom(bytes))
attributeBuilder.setCustomValue(anyBuilder.build())
}
}
)
// Class Wrapper for transformer(closure)
private class ClosureWrapper[T: ClassTag](
val closure: (Tensor[T], TensorNumeric[T]) => Tensor[T])
(implicit ev: TensorNumeric[T]) extends Serializable
/**
* build a TensorOp with user-defined transformer
*
* @param transformer user-defined tensor transformer
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def apply[T: ClassTag](transformer: (Tensor[T], TensorNumeric[T]) => Tensor[T]
)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp(transformer)
}
/**
* build a TensorOp with identity transformer
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t)
}
/**
* build a TensorOp to do element-wise `f(x) = x + a`
*
* @param value T a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def add[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.add(value))
}
/**
* build a TensorOp to do element-wise tensor addition
*
* @param tensor Tensor[T]
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def add[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.add(tensor))
}
/**
* build a TensorOp to do element-wise `f(x) = x - a`
*
* @param value T a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def sub[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.sub(value))
}
/**
* build a TensorOp to do element-wise tensor subtraction
*
* @param tensor Tensor[T]
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def sub[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.sub(tensor))
}
/**
* build a TensorOp to do element-wise `f(x) = a * x`
*
* @param value T a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def mul[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.mul(value))
}
/**
* build a TensorOp to do element-wise multiplication
*
* @param tensor Tensor[T]
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def mul[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp[T]((t: Tensor[T], _) => t.cmul(tensor))
}
/**
* build a TensorOp to do element-wise `f(x) = x / a`
*
* @param value T a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def div[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.div(value))
}
/**
* build a TensorOp to do element-wise division
*
* @param tensor Tensor[T]
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def div[T: ClassTag](tensor: Tensor[T])(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.div(tensor))
}
/**
* build a TensorOp to do element-wise `f(x) = if (x>=a) 1; else 0`
*
* @param value Double a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def ge[T: ClassTag](value: Double)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.ge(t, value))
}
/**
* build a TensorOp to do element-wise `f(x) = if (x==a) 1; else 0`
*
* @param value T a
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def eq[T: ClassTag](value: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.eq(t, value))
}
/**
* build a TensorOp to do matrix transposition for 2d Tensors
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def t[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.t())
}
/**
* build a TensorOp to do element-wise `f(x) = sqrt(x)`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def sqrt[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.sqrt())
}
/**
* build a TensorOp to do element-wise `f(x) = log(x)`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def log[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.log())
}
/**
* build a TensorOp to do element-wise `f(x) = log(x + 1)`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def log1p[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.log1p())
}
/**
* build a TensorOp to do element-wise `f(x) = exp(x)`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def exp[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.exp())
}
/**
* build a TensorOp to do element-wise `f(x) = x ^ n`
*
* @param n the order of power
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def pow[T: ClassTag](n: T)(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.pow(n))
}
/**
* build a TensorOp to do element-wise `f(x) = x ^ 2`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def square[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.square())
}
/**
* build a TensorOp to do element-wise `floor`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def floor[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.floor())
}
/**
* build a TensorOp to do element-wise `ceil`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def ceil[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.ceil())
}
/**
* build a TensorOp to do element-wise `f(x) = 1 / x`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def inv[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.inv())
}
/**
* build a TensorOp to do element-wise `f(x) = -x`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def negative[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.negative(t))
}
/**
* build a TensorOp to do element-wise `f(x) = |x|`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def abs[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.abs())
}
/**
* build a TensorOp to do element-wise `f(x) = tanh(x)`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def tanh[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.tanh())
}
/**
* build a TensorOp to do element-wise `f(x) = if (x>0) 1; if (x=0) 0; else -1`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def sign[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], _) => t.sign())
}
/**
* build a TensorOp to do element-wise `f(x) = 1 / (1 + exp(-x))`
*
* @tparam T type param of TensorOp
* @return TensorOp[T]
*/
def sigmoid[T: ClassTag]()(implicit ev: TensorNumeric[T]): TensorOp[T] = {
new TensorOp((t: Tensor[T], ev: TensorNumeric[T]) => {
t.negative(t).exp()
.add(ev.one)
.inv()
})
}
}
/**
* Select and copy a Tensor from a [[Table]] with a key.
* And do tensor transformation if [[transformer]] is defined.
* If [[isTensorKey]] is `false`, the real key is the value of [[keyTensor]].
* Otherwise, the real key is [[keyTensor]].
*
* @param keyTensor the key or tensor wrapper of key, must be a scalar tensor
* @param isTensorKey whether the key is a scalar tensor or a primitive value, default true
* @param transformer user-defined transformer, default(null) means do nothing
* @tparam T Numeric type
*/
class SelectTensor[T: ClassTag] private(
private val keyTensor: Tensor[_],
private val isTensorKey: Boolean = true,
private val transformer: TensorOp[T] = null)
(implicit ev: TensorNumeric[T]) extends Operation[Table, Tensor[T], T] {
override def updateOutput(input: Table): Tensor[T] = {
val _key = if (isTensorKey) keyTensor else keyTensor.value()
val selected = input[Tensor[T]](_key)
if (transformer != null) {
output = transformer.updateOutput(selected)
} else {
// TODO: support SparseTensor.copy
output.resizeAs(selected).copy(selected)
}
output
}
}
object SelectTensor {
/**
* Build a `SelectTensor` Instance with a keyTensor.
*
* @param keyTensor the key or tensor wrapper of key, must be a scalar tensor
* @param isTensorKey whether the key is a scalar tensor or a primitive value, default true
* @param transformer user-defined transformer, default(null) means do nothing
* @tparam T Numeric type
* @return a `SelectTensor` Instance
*/
def apply[T: ClassTag](
keyTensor: Tensor[_],
isTensorKey: Boolean = true,
transformer: TensorOp[T] = null)
(implicit ev: TensorNumeric[T]): SelectTensor[T] = {
require(keyTensor.isScalar, "The key must be a Scalar Tensor!")
new SelectTensor[T](keyTensor, isTensorKey, transformer)
}
/**
* Build a `SelectTensor` Instance with a non-Tensor key with Type [[D]].
*
* @param key the key, must be able to be wrapped by Tensor
* @tparam T Numeric type
* @tparam D type of key, must be supported by TensorDataType
* @return a `SelectTensor` Instance
*/
def apply[T: ClassTag, D: ClassTag](key: D)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): SelectTensor[T] = {
val keyTensor = Tensor.scalar(key)
new SelectTensor[T](keyTensor, false, null)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy