com.intel.analytics.bigdl.nn.ops.Tile.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath._
import com.intel.analytics.bigdl.utils.{Engine, Table}
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* This operation creates a new tensor by replicating input multiples times.
* The output tensor's i'th dimension has input.dims(i) * multiples[i] elements,
* and the values of input are replicated multiples[i] times along the 'i'th dimension.
*
* For example, tiling [a b c d] by [1, 2] produces [a b c d a b c d].
*
* @param ev$1
* @param ev
* @tparam T Numeric type. Only support float/double now
*/
class Tile[T: ClassTag]()(implicit ev: TensorNumeric[T])
extends Operation[Table, Tensor[_], T] {
@transient
private var results: Array[Future[Unit]] = _
def updateOutput(inputs: Table): Tensor[_] = {
val input = inputs[Tensor[Tensor[NumericWildcard]]](1)
val multiples = inputs[Tensor[Int]](2)
if (multiples.isEmpty) {
output = input
return output
}
require(input.nDimension() == multiples.size(1),
"Length of multiples must be the same as the number of dimensions in input")
output.asInstanceOf[Tensor[Tensor[NumericWildcard]]].resizeAs(input).copy(input)
for (j <- 1 to input.nDimension()) {
val currentOutput = output.clone()
val mult = multiples(Array(j))
val newSize = output.size()
newSize(j - 1) = newSize(j - 1) * mult
output.resize(newSize)
var offset = 1
var i = 0
while (i < mult) {
val _offset = offset
if (results == null || results.length != mult) {
results = new Array[Future[Unit]](mult)
}
results(i) = Engine.model.invoke(() => {
val target = this.output.narrow(j, _offset,
currentOutput.size(j))
if (target.isContiguous() || j > 2) {
// Copy directly when target is Contiguous or dimension is larger than 2
// in which case the contiguous region in target tensor is fairly small in practice
target.asInstanceOf[Tensor[NumericWildcard]]
.copy(currentOutput.asInstanceOf[Tensor[NumericWildcard]])
} else {
// Divide target into contiguous frames when target isn't contiguous
var f = 1
while (f <= target.size(1)) {
val curFrame = target.select(1, f)
val outputFrame = currentOutput.select(1, f)
require(curFrame.isContiguous())
require(outputFrame.isContiguous())
curFrame.asInstanceOf[Tensor[NumericWildcard]]
.copy(outputFrame.asInstanceOf[Tensor[NumericWildcard]])
f += 1
}
}
})
i += 1
offset += currentOutput.size(j)
}
}
output
}
}
object Tile {
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): Operation[Activity, Activity, T]
= ModuleToOperation[T](new Tile())
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy