com.intel.analytics.bigdl.nn.quantized.QuantSerializer.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.quantized
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.serializer.converters.TensorConverter
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.reflect.ClassTag
trait QuantSerializer extends ModuleSerializable {
def serializeWeight[T: ClassTag](context: SerializeContext[T],
modelBuilder: BigDLModule.Builder)(implicit ev: TensorNumeric[T]): Unit
def serializeBias[T: ClassTag](context: SerializeContext[T],
modelBuilder: BigDLModule.Builder)(implicit ev: TensorNumeric[T]): Unit = {
val moduleData = context.moduleData
val paramTable : Table = moduleData.module.getParametersTable()
val moduleName = moduleData.module.getName()
if (paramTable != null && paramTable.contains(moduleName)) {
val modulePramTable: Table = paramTable(moduleName)
val bias: Tensor[T] = if (modulePramTable.contains("bias")) {
modulePramTable("bias")
} else {
null
}
if (bias != null) {
val biasAttr = AttrValue.newBuilder
TensorConverter.setAttributeValue(context, biasAttr, bias)
modelBuilder.setBias(biasAttr.getTensorValue)
}
}
}
def serializeOthers[T: ClassTag](context: SerializeContext[T],
modelBuilder: BigDLModule.Builder)(implicit ev: TensorNumeric[T]): Unit = {
}
def loadWeight[T: ClassTag](context: DeserializeContext,
module: ModuleData[T])(implicit ev: TensorNumeric[T]): Unit
def loadBias[T: ClassTag](context: DeserializeContext,
moduleData: ModuleData[T])(implicit ev: TensorNumeric[T]): Unit = {
val moduleName = moduleData.module.getName()
val paramTable : Table = moduleData.module.getParametersTable
if (paramTable != null && paramTable.contains(moduleName)) {
val modulePramTable : Table = paramTable(moduleName)
val bias : Tensor[T] = if (modulePramTable.contains("bias")) {
modulePramTable("bias")
} else {
null
}
if (bias != null) {
val attrValue = AttrValue.newBuilder
attrValue.setTensorValue(context.bigdlModule.getBias)
val bias = TensorConverter.getAttributeValue(context, attrValue.build)
modulePramTable("bias").asInstanceOf[Tensor[T]].copy(bias.asInstanceOf[Tensor[T]])
}
}
}
def loadOthers[T: ClassTag](context: DeserializeContext,
module: ModuleData[T])(implicit ev: TensorNumeric[T]): Unit = {
}
override protected def copyFromBigDL[T: ClassTag](context: SerializeContext[T],
modelBuilder: BigDLModule.Builder)(implicit ev: TensorNumeric[T]): Unit = {
val storageType = context.storageType
if (storageType == ProtoStorageType) {
serializeWeight(context, modelBuilder)
serializeBias(context, modelBuilder)
serializeOthers(context, modelBuilder)
} else {
throw new IllegalArgumentException(s"$storageType not supported!")
}
}
override protected def copy2BigDL[T: ClassTag](context: DeserializeContext, module: ModuleData[T])
(implicit ev: TensorNumeric[T]): Unit = {
loadWeight(context, module)
loadBias(context, module)
loadOthers(context, module)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy