com.intel.analytics.bigdl.nn.quantized.Quantization.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.quantized
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.quantized.Utils._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import java.nio.ByteBuffer
import scala.reflect.ClassTag
object Quantization {
def findMax(src: Array[Float], start: Int, end: Int): Float = {
src.slice(start, end).max
}
def findMin(src: Array[Float], start: Int, end: Int): Float = {
src.slice(start, end).min
}
def quantize(value: Float, max: Float, min: Float): Byte = {
Math.round(1.0 * value / Math.max(Math.abs(max), Math.abs(min)) * Byte.MaxValue).toByte
}
def dequantize(byte: Byte, max: Float, min: Float): Float = {
byte.toFloat / Byte.MaxValue * Math.max(Math.abs(max), Math.abs(min))
}
def quantize(src: Array[Float], start: Int, end: Int, dst: Array[Byte],
dstOffset: Int): (Float, Float) = {
// we should keep the plus and minus
val max = findMax(src, start, end)
val min = findMin(src, start, end)
for (i <- 0 until end - start) {
dst(dstOffset + i) = quantize(src(start + i), max, min)
}
(max, min)
}
def dequantize(src: Array[Float], start: Int, end: Int, dst: Array[Byte], dstOffset: Int,
max: Float, min: Float): Unit = {
require(src.length >= end, s"you write too much elements")
for (i <- 0 until end - start) {
src(start + i) = dequantize(dst(dstOffset + i), max, min)
}
}
def quantize(src: Array[Float], start: Int, end: Int, dst: Array[Byte], dstOffset: Int,
size: Array[Int]): (Array[Float], Array[Float]) = {
require(size.length == 2, s"only support 2-dim matrix")
require(size.product == (end - start), s"number of elements does not match")
val height = size(0)
val width = size(1)
val max = new Array[Float](height)
val min = new Array[Float](height)
for (i <- 0 until height) {
val maxAndMin = quantize(src, start + i * width, start + (i + 1) * width, dst,
dstOffset + i * width)
max(i) = maxAndMin._1
min(i) = maxAndMin._2
}
(max, min)
}
def dequantize(data: Array[Float], start: Int, end: Int, quantizedData: Array[Byte], offset: Int,
max: Array[Float], min: Array[Float], size: Array[Int]): Unit = {
require(max.length == min.length, s"the number of max doesn't match with the number of min")
require(size.length == 2, s"only support 2-dim matrix")
require(max.length == size(0),
s"the number of max(${max.length}) doesn't match the size(${size(1)})")
require(size.product == (end - start), s"number of elements does not match")
val height = size(0)
val width = size(1)
for (i <- 0 until height) {
dequantize(data, start + i * width, start + (i + 1) * width,
quantizedData, offset + i * width, max(i), min(i))
}
}
private[bigdl] def get2Dim(shape: Array[Int]): Array[Int] = {
require(shape.length > 1, s"error size dimension, which must be great than 1")
val first = shape(0)
val last = shape.slice(1, shape.length).product
Array(first, last)
}
def quantize(input: Tensor[Float], buffer: Array[Byte],
offset: Int): (Array[Float], Array[Float]) = {
val length = input.nElement()
input.dim() match {
case 1 =>
val (max, min) = quantize(input.storage().array(), input.storageOffset() - 1,
length, buffer, offset)
(Array(max), Array(min))
case x if x > 1 =>
val size = get2Dim(input.size())
val start = input.storageOffset() - 1
val end = start + length
val (max, min) = quantize(input.storage().array(), start, end, buffer, offset, size)
(max, min)
case _ => throw new UnsupportedOperationException(s"unsupported input")
}
}
def dequantize(input: Tensor[Float], buffer: Array[Byte], offset: Int, max: Array[Float],
min: Array[Float]): Unit = {
val start = input.storageOffset() - 1
val end = start + input.nElement()
input.dim() match {
case 1 => dequantize(input.storage().array(), start, end, buffer,
offset, max(0), min(0))
case x if x > 1 =>
dequantize(input.storage().array(), start, end, buffer,
offset, max, min, get2Dim(input.size()))
case _ => throw new UnsupportedOperationException {
s"unsupported input dim ${input.dim()}"
}
}
}
def loss(before: Array[Float], after: Array[Float], start: Int, end: Int): Double = {
var lossValue = 0.0
for (i <- start until end) {
lossValue += Math.abs(before(i) - after(i))
}
lossValue
}
def loss(before: Tensor[Float], after: Tensor[Float]): Double = {
val beforeArray = before.storage().array()
val afterArray = after.storage().array()
val start = 0
val end = before.nElement()
loss(beforeArray, afterArray, start, end) / beforeArray.sum
}
def quantize[T: ClassTag](model: Module[T])(implicit ev: TensorNumeric[T]): Module[T] = {
// deep copy a new model then substitute with all quantized version modules
val clonedModel = model.cloneModule()
println("Converting model now")
val quantizedModel = Quantizer.quantize(clonedModel)
println("Converting model successfully")
val paras = quantizedModel.parameters()._1
reorganizeParameters(paras)
quantizedModel
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy