com.intel.analytics.bigdl.nn.quantized.Utils.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.quantized
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, TensorModule}
import com.intel.analytics.bigdl.nn.tf.WithoutInput
import com.intel.analytics.bigdl.nn.{Cell, Container, Graph, Input, TimeDistributed, Linear => NNLinear, SpatialConvolution => NNConv, SpatialDilatedConvolution => NNDilatedConv}
import com.intel.analytics.bigdl.tensor.{QuantizedTensor, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Node
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
object Utils {
type ModuleNode[R] = AbstractModule[Activity, Activity, R]
type SeqNodes[R] = Seq[Node[ModuleNode[R]]]
type ArrayNodes[R] = Array[Node[ModuleNode[R]]]
type ANode[R] = Node[ModuleNode[R]]
type AbsModule[R] = AbstractModule[Activity, Activity, R]
/**
* delete parameters of SpatialConvolution, SpatialDilatedConvolution) and linear.
*
* because it will make all parameters into a long array in a BigDL model by default,
* so the origin parameters will exist in the quantized model. We have to delete them
* for reducing the size.
*
* After deleting all these matched parameters, it will make a **new** long array of
* other layers parameters.
*
* @param parameters parameters of all layers
* @tparam T data type Float or Double
* @return parameters reorganized
*/
def reorganizeParameters[T: ClassTag](parameters: Array[Tensor[T]])(
implicit ev: TensorNumeric[T]): Tensor[T] = {
var length = 0
for (i <- parameters.indices) {
if (!parameters(i).isInstanceOf[QuantizedTensor[T]]) {
length += parameters(i).nElement()
}
}
val result = Tensor[T](length)
var offset = 0
for (i <- parameters.indices) {
val parameter = parameters(i)
if (!parameter.isInstanceOf[QuantizedTensor[T]]) {
val length = parameter.nElement()
val (src, srcOffset) = (parameter.storage().array(), parameter.storageOffset() - 1)
val (dst, dstOffset) = (result.storage().array(), offset)
val (size, stride) = (parameter.size(), parameter.stride())
System.arraycopy(src, srcOffset, dst, dstOffset, length)
parameter.set(result.storage(), offset + 1, size, stride)
offset += length
}
}
result
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy