com.intel.analytics.bigdl.nn.tf.BiasAdd.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.tf
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
class BiasAdd[T: ClassTag]()
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Tensor[T], T] {
var onesBias: Tensor[T] = _
override def updateOutput(input: Table): Tensor[T] = {
val value = input[Tensor[T]](1)
val bias = input[Tensor[T]](2)
val sizes = value.size().toBuffer
val last = sizes.last
sizes.remove(value.nDimension() - 1)
val sizeProduct = sizes.product
if (value.getType() != output.getType()) {
output = value.emptyInstance()
}
if (onesBias == null) {
onesBias = value.emptyInstance()
}
if (onesBias.dim() != 1 || onesBias.size(1) != sizeProduct) {
onesBias.resize(sizeProduct).fill(ev.fromType(1.0))
}
output.resizeAs(value)
.copy(value)
val value2d = output.view(Array(sizeProduct, last))
value2d
.addr(
value.getTensorNumeric().one,
onesBias,
bias)
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
val value = input[Tensor[T]](1)
val bias = input[Tensor[T]](2)
val sizes = value.size().toBuffer
val last = sizes.last
sizes.remove(value.nDimension() - 1)
val sizeProduct = sizes.product
if (!gradInput.contains(1)) {
gradInput(1) = value.emptyInstance()
}
if (!gradInput.contains(2)) {
gradInput(2) = bias.emptyInstance()
}
val gradValue = gradInput[Tensor[T]](1)
val gradBias = gradInput[Tensor[T]](2)
gradValue.resizeAs(value).copy(gradOutput)
val gradOutput2d = gradOutput.view(Array(sizeProduct, last))
gradBias.resizeAs(bias).addmv(ev.fromType(1.0), gradOutput2d.t, onesBias)
gradInput
}
}
object BiasAdd {
def apply[T: ClassTag]()
(implicit ev: TensorNumeric[T]):
BiasAdd[T]
= new BiasAdd[T]()
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy