com.intel.analytics.bigdl.optim.Adam.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.optim
import breeze.linalg.*
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.math._
import scala.reflect.ClassTag
/**
* An implementation of Adam http://arxiv.org/pdf/1412.6980.pdf
* @param learningRate learning rate
* @param learningRateDecay learning rate decay
* @param beta1 first moment coefficient
* @param beta2 second moment coefficient
* @param Epsilon for numerical stability
* @tparam T
*/
class Adam[@specialized(Float, Double) T: ClassTag](
var learningRate: Double = 1e-3,
var learningRateDecay: Double = 0.0,
var beta1: Double = 0.9,
var beta2: Double = 0.999,
var Epsilon: Double = 1e-8)(implicit ev: TensorNumeric[T]) extends OptimMethod[T] {
@transient
private var buffer: Tensor[T] = null
/**
* An implementation of Adam http://arxiv.org/pdf/1412.6980.pdf
*
* @param feval a function that takes a single input (X), the point of a evaluation, and
* returns f(X) and df/dX
* @param parameter the initial point
* @return the new x vector and the function list {fx}, evaluated before the update
*/
override def optimize(feval: (Tensor[T]) => (T, Tensor[T]),
parameter: Tensor[T]): (Tensor[T], Array[T]) = {
if (buffer == null) buffer = Tensor[T]()
val lr = this.learningRate
val lrd = this.learningRateDecay
val beta1 = this.beta1
val beta2 = this.beta2
val eps = this.Epsilon
val (fx, dfdx) = feval(parameter)
var timestep = state.getOrElse[Int]("evalCounter", 0)
val (_s, _r, _denom) =
if (state.get[Tensor[T]]("s").isDefined) {
(state.get[Tensor[T]]("s").get, state.get[Tensor[T]]("r").get,
state.get[Tensor[T]]("denom").get.resizeAs(dfdx))
} else {
(Tensor[T]().resizeAs(dfdx).zero(), Tensor[T]().resizeAs(dfdx).zero(),
Tensor[T]().resizeAs(dfdx).zero())
}
val clr = lr / (1 + timestep*lrd)
timestep = timestep + 1
/**
* m_t = beta_1 * m_t-1 + (1 - beta_1) * g_t
* v_t = beta_2 * v_t-1 + (1 - beta_2) * g_t * g_t
*/
_s.mul(ev.fromType[Double](beta1)).add(ev.fromType[Double](1-beta1), dfdx)
// buffer = dfdx * dfdx
buffer.resizeAs(dfdx).cmul(dfdx, dfdx)
_r.mul(ev.fromType[Double](beta2)).add(ev.fromType[Double](1-beta2), buffer)
_denom.sqrt(_r)
// used as MKL.axpy: 1 * a + y = y, and fill buffer with one
buffer.fill(ev.one)
_denom.add(ev.fromType(eps), buffer)
// efficiency improved upon by changing the order of computation, at expense of clarity
val biasCorrection1 = 1 - pow(beta1, timestep)
val biasCorrection2 = 1 - pow(beta2, timestep)
val stepSize = clr * sqrt(biasCorrection2) / biasCorrection1
parameter.addcdiv(ev.fromType[Double](-stepSize), _s, _denom)
state("evalCounter") = timestep // A tmp tensor to hold the sqrt(v) + epsilon
state("s") = _s // 1st moment variables
state("r") = _r // 2nd moment variables
state("denom") = _denom // 3nd moment variables
(parameter, Array(fx))
}
override def loadFromTable(config: Table): this.type = {
this.learningRate = config.get[Double]("learningRate").getOrElse(this.learningRate)
this.learningRateDecay = config.get[Double]("learningRateDecay")
.getOrElse(this.learningRateDecay)
this.beta1 = config.get[Double]("beta1").getOrElse(this.beta1)
this.beta2 = config.get[Double]("beta2").getOrElse(this.beta2)
this.Epsilon = config.get[Double]("Epsilon").getOrElse(this.Epsilon)
this
}
override def clearHistory(): Unit = {
state.delete("s")
state.delete("r")
}
override def getLearningRate(): Double = this.learningRate
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy