All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.optim.ParallelAdam.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.intel.analytics.bigdl.optim

import com.intel.analytics.bigdl.tensor.{Storage, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Engine, T, Table}
import org.apache.log4j.Logger

import scala.math._
import scala.reflect.ClassTag

/**
 * An multi-thread implementation of Adam http://arxiv.org/pdf/1412.6980.pdf
 *
 * @param learningRate learning rate
 * @param learningRateDecay learning rate decay
 * @param beta1 first moment coefficient
 * @param beta2 second moment coefficient
 * @param Epsilon for numerical stability
 * @param parallelNum parallelism number, default is core number.
 * @tparam T
 */
class ParallelAdam[@specialized(Float, Double) T: ClassTag](
    var learningRate: Double = 1e-3,
    var learningRateDecay: Double = 0.0,
    var beta1: Double = 0.9,
    var beta2: Double = 0.999,
    var Epsilon: Double = 1e-8,
    var parallelNum: Int = Engine.coreNumber()
  )(implicit ev: TensorNumeric[T]) extends OptimMethod[T] {

  @transient
  private var ones: Tensor[T] = null

  /**
   * An implementation of Adam http://arxiv.org/pdf/1412.6980.pdf
   *
   * @param feval     a function that takes a single input (X), the point of a evaluation, and
   *                  returns f(X) and df/dX
   * @param parameter the initial point
   * @return the new x vector and the function list {fx}, evaluated before the update
   */
  override def optimize(feval: (Tensor[T]) => (T, Tensor[T]),
                        parameter: Tensor[T]): (Tensor[T], Array[T]) = {
    val lr = this.learningRate
    val lrd = this.learningRateDecay
    val beta1 = this.beta1
    val beta2 = this.beta2
    val eps = this.Epsilon

    val (fx, dfdx) = feval(parameter)

    var timestep = state.getOrElse[Int]("evalCounter", 0)

    val clr = lr / (1 + timestep*lrd)

    timestep = timestep + 1

    val gradLength = parameter.nElement()
    val taskSize = gradLength / parallelNum
    val extraTask = gradLength % parallelNum
    if (ones == null || ones.nElement() < taskSize + 1) {
      ones = Tensor[T]().resize(taskSize + 1).fill(ev.one)
    }

    (0 until parallelNum).foreach{tid =>
      if (state.get[Tensor[T]](s"s$tid").isEmpty) {
        state(s"s$tid") = Tensor[T]()
        state(s"r$tid") = Tensor[T]()
        state(s"denom$tid") = Tensor[T]()
      }
    }

    Engine.default.invokeAndWait((0 until parallelNum).map(tid => () => {
      val start = System.nanoTime()
      val offset = tid * taskSize + math.min(tid, extraTask)
      val length = taskSize + (if (tid < extraTask) 1 else 0)
      val currentDfdx = dfdx.narrow(1, offset + 1, length)
      val currentParameter = parameter.narrow(1, offset + 1, length)
      val currentOnes = ones.narrow(1, 1, length)
      val (_s, _r, _denom) =
        (state.get[Tensor[T]](s"s$tid").get.resizeAs(currentParameter),
          state.get[Tensor[T]](s"r$tid").get.resizeAs(currentParameter),
          state.get[Tensor[T]](s"denom$tid").get.resizeAs(currentParameter))

      ParallelAdam.updateFrame(_s, _r, _denom, clr, currentDfdx, currentParameter,
        beta1, beta2, timestep, currentOnes, eps)
    }))

    state("evalCounter") = timestep // A tmp tensor to hold the sqrt(v) + epsilon

    (parameter, Array(fx))
  }

  override def loadFromTable(config: Table): this.type = {
    this.learningRate = config.get[Double]("learningRate").getOrElse(this.learningRate)
    this.learningRateDecay = config.get[Double]("learningRateDecay")
      .getOrElse(this.learningRateDecay)
    this.beta1 = config.get[Double]("beta1").getOrElse(this.beta1)
    this.beta2 = config.get[Double]("beta2").getOrElse(this.beta2)
    this.Epsilon = config.get[Double]("Epsilon").getOrElse(this.Epsilon)
    this
  }

  override def clearHistory(): Unit = {
    state.delete("s")
    state.delete("r")
  }

  override def getLearningRate(): Double = this.learningRate
}

object ParallelAdam {
  val logger = Logger.getLogger(this.getClass)

  private[optim] def updateFrame[T: ClassTag](_s: Tensor[T], _r: Tensor[T], _denom: Tensor[T],
                                              clr: Double, dfdx: Tensor[T], parameter: Tensor[T],
                                              beta1: Double, beta2: Double, timestep: Int,
                                              ones: Tensor[T], eps: Double)(
                                                 implicit ev: TensorNumeric[T]): Unit = {
    /**
     * m_t = beta_1 * m_t-1 + (1 - beta_1) * g_t
     * v_t = beta_2 * v_t-1 + (1 - beta_2) * g_t * g_t
     */
    _s.mul(ev.fromType[Double](beta1)).add(ev.fromType[Double](1-beta1), dfdx)
    _denom.cmul(dfdx, dfdx)
    _r.mul(ev.fromType[Double](beta2)).add(ev.fromType[Double](1-beta2), _denom)
    _denom.sqrt(_r)

    // used as MKL.axpy: 1 * a + y = y, and fill buffer with one
    _denom.add(ev.fromType(eps), ones)

    // efficiency improved upon by changing the order of computation, at expense of clarity
    val biasCorrection1 = 1 - pow(beta1, timestep)
    val biasCorrection2 = 1 - pow(beta2, timestep)
    val stepSize = clr * sqrt(biasCorrection2) / biasCorrection1
    _denom.cdiv(_s, _denom)
    parameter.add(ev.fromType[Double](-stepSize), _denom)
  }


  private[optim] def updateFrameZeroGrad[T: ClassTag](
    currentIteration: Int, lastUpdatedIteration: Int,
    _s: Tensor[T], _r: Tensor[T], _denom: Tensor[T], _buffer: Tensor[T],
    clr: Double, parameter: Tensor[T],
    beta1: Double, beta2: Double,
    ones: Tensor[T], eps: Double)(
     implicit ev: TensorNumeric[T]): Unit = {

    var timestep = lastUpdatedIteration
    while(timestep < currentIteration) {
      val biasCorrection1 = 1 - pow(beta1, timestep)
      val biasCorrection2 = 1 - pow(beta2, timestep)
      val stepSize = clr * sqrt(biasCorrection2) / biasCorrection1
      /**
       * m_t = beta_1 * m_t-1
       * v_t = beta_2 * v_t-1
       */
      _s.mul(ev.fromType[Double](beta1))
      _r.mul(ev.fromType[Double](beta2))
      _denom.sqrt(_r)

      // used as MKL.axpy: 1 * a + y = y
      _denom.add(ev.fromType(eps), ones)

      _denom.cdiv(_s, _denom)
      parameter.add(ev.fromType[Double](-stepSize), _denom)

      timestep += 1
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy