com.intel.analytics.bigdl.parameters.ParameterOperations.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.parameters
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.{DistributedDataSet, MiniBatch}
import org.apache.spark.rdd.RDD
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.optim.DistriOptimizer.Cache
import com.intel.analytics.bigdl.optim.Metrics
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import org.apache.spark.broadcast.Broadcast
import scala.collection.mutable
/**
* Process parameters trait, subclass must be independent of each other
*/
private[bigdl] trait ParameterProcessor
extends Serializable {
/**
* Collect global data according to operations list, usually executed in driver
*
* @param models cached models
* @param parameters [[AllReduceParameter]]
* @param metrics metrics
* @param state A table contained needed information
*/
def collectGlobalData[T](models: RDD[Cache[T]],
parameters: AllReduceParameter[T],
metrics: Metrics,
state: Table)(implicit ev: TensorNumeric[T]) : Unit = {}
/**
* Advance operations to process parameters, usually executed in worker
*
* @param parameters [[AllReduceParameter]]
* @param state A table contained needed information
*/
def processParameters[T](parameters: AllReduceParameter[T],
modelCache: Cache[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {}
/**
* Advance operations to process parameters, usually executed in local optimer
*
* @param model the model to be trained
* @param state A table contained needed information
*/
def processParameters[T](model: Module[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {}
}
/**
* Process constant clipping
*/
private[bigdl] class ConstantClippingProcessor(min: Double, max: Double)
extends ParameterProcessor {
override def processParameters[T](parameters: AllReduceParameter[T],
modelCache: Cache[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {
parameters.gradientPartition.clamp(min, max)
}
override def processParameters[T](model: Module[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {
val gradients = model.getParameters()._2
gradients.clamp(min, max)
}
}
/**
* Process l2 norm clipping
*/
private[bigdl] class L2NormClippingProcessor(l2NormThreshold: Double)
extends ParameterProcessor {
override def collectGlobalData[T](models: RDD[Cache[T]],
parameters: AllReduceParameter[T],
metrics: Metrics,
state: Table)(implicit ev: TensorNumeric[T]) : Unit = {
val numFinishedModel = state.get[Int]("numFinishedModel").get
val parallelism = state.get[Int]("parallelism").get
val isGradientUpdated = state.get[Boolean]("isGradientUpdated").get
val sumSquare = models.mapPartitions(modelIter => {
if (!isGradientUpdated) {
val getG = System.nanoTime()
parameters.aggregateGradientPartition(numFinishedModel)
metrics.add("aggregrateGradientParition average executor",
System.nanoTime() - getG)
}
val sum = Util.getSumsquareInParallel(parameters.gradientPartition, parallelism)
Iterator.single(sum)
}).reduce(_ + _)
state("isGradientUpdated") = true
state("l2Norm") = math.sqrt(sumSquare)
}
override def processParameters[T](parameters: AllReduceParameter[T],
modelCache: Cache[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {
val l2Norm = state.get[Double]("l2Norm").get
if (l2Norm > l2NormThreshold) {
val scale = ev.fromType[Double](l2Norm / l2NormThreshold)
parameters.gradientPartition.div(scale)
}
}
override def processParameters[T](model: Module[T],
state: Table)(implicit ev: TensorNumeric[T]): Unit = {
val parallelism = state.get[Int]("parallelism").get
val gradients = model.getParameters()._2
val l2Norm = math.sqrt(Util.getSumsquareInParallel(gradients, parallelism))
if (l2Norm > l2NormThreshold) {
val scale = ev.fromType[Double](l2Norm / l2NormThreshold)
gradients.div(scale)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy