com.intel.analytics.bigdl.tensor.DenseTensorBLAS.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath._
object DenseTensorBLAS {
var time = 0L
/**
* The gemm routines compute a scalar-matrix-matrix product and
* add the result to a scalar-matrix product, with general matrices.
* C := alpha*op(A)*op(B) + beta*C,
* where:
* op(X) is one of op(X) = X, or op(X) = XT,
* alpha and beta are scalars,
* A, B and C are matrices:
* op(A) is an m-by-k matrix,
* op(B) is a k-by-n matrix,
* C is an m-by-n matrix.
*
* this interface treat the input array as column-major array.
*
* @param transa Specifies the form of op(A) used in the matrix multiplication:
* if transa=CblasNoTrans, then op(A) = A;
if transa=CblasTrans, then op(A) = AT;
* @param transb Specifies the form of op(B) used in the matrix multiplication:
if transb=CblasNoTrans, then op(B) = B;
if transb=CblasTrans, then op(B) = BT;
* @param m Specifies the number of rows of the matrix op(A) and of the matrix C.
* The value of m must be at least zero.
* @param n Specifies the number of columns of the matrix op(B) and the number of
* columns of the matrix C. The value of n must be at least zero.
* @param k Specifies the number of columns of the matrix op(A) and the number of
* rows of the matrix op(B). The value of k must be at least zero.
* @param alpha Specifies the scalar alpha.
* @param a Array. if transa=CblasNoTrans, size lda*k. if transa=CblasTrans, size lda*m.
* @param aOffset a offset
* @param lda Specifies the leading dimension of a as declared in the calling (sub)program.
* if transa=CblasNoTrans, lda must be at least max(1, m).
* if transa=CblasTrans, lda must be at least max(1, k).
* @param b Array. if transb=CblasNoTrans, size ldb by n. if transb=CblasTrans, size ldb by k.
* @param bOffset b offset
* @param ldb Specifies the leading dimension of b as declared in the calling (sub)program.
* if transb=CblasNoTrans, ldb must be at least max(1, m).
* if transb=CblasTrans, ldb must be at least max(1, k).
* @param beta Specifies the scalar beta.
When beta is equal to zero, then c need not be set on input.
* @param c Array, size ldc by n. Before entry, the leading m-by-n part of the array c must
* contain the matrix C, except when beta is equal to zero,
* in which case c need not be set on entry.
* @param cOffset c offset
* @param ldc ldc must be at least max(1, m).
* @param ev
* @tparam T
*/
def gemm[@specialized(Float, Double) T](transa: Char, transb: Char,
m: Int, n: Int, k: Int,
alpha: T,
a: Array[T], aOffset: Int, lda: Int,
b: Array[T], bOffset: Int, ldb: Int,
beta: T,
c: Array[T], cOffset: Int, ldc: Int)(implicit ev: TensorNumeric[T]): Unit = {
val _transa = (transa == 't' || transa == 'T')
val _transb = (transb == 't' || transb == 'T')
var _ldc = ldc
if (n == 1) {
_ldc = m
}
var _lda = lda
if (_transa) {
if (m == 1) {
_lda = k
}
} else {
if (k == 1) {
_lda = m
}
}
var _ldb = ldb
if (_transb) {
if (k == 1) {
_ldb = n
}
} else {
if (n == 1) {
_ldb = k
}
}
val start = System.nanoTime()
ev.gemm(transa, transb, m, n, k, alpha, a, aOffset, _lda, b, bOffset, _ldb, beta, c,
cOffset, _ldc)
time += (System.nanoTime() - start)
}
/**
* The gemv routines perform a matrix-vector operation defined as
* y := alpha*A*x + beta*y,
* or
* y := alpha*A'*x + beta*y,
* where:
* alpha and beta are scalars,
* x and y are vectors,
* A is an m-by-n matrix.
*
* this interface treat the input array as column-major array.
*
* @param trans Specifies the operation:
* if trans=CblasNoTrans, then y := alpha*A*x + beta*y;
* if trans=CblasTrans, then y := alpha*A'*x + beta*y;
*
* @param m Specifies the number of rows of the matrix A.
* The value of m must be at least zero.
* @param n Specifies the number of columns of the matrix A.
* The value of n must be at least zero.
* @param alpha Specifies the scalar alpha.
* @param a Array, size lda* n. Before entry, the leading m-by-n part of the array a must
* contain the matrix A.
* @param aOffset a offset
* @param lda Specifies the leading dimension of a as declared in the calling (sub)program.
* the value of lda must be at least max(1, m).
* @param x Array, size at least (1+(n-1)*abs(incx)).
* Before entry, the incremented array x must contain the vector x.
* @param xOffset x offset
* @param incx Specifies the increment for the elements of x.
* The value of incx must not be zero.
* @param beta Specifies the scalar beta.
* When beta is set to zero, then y need not be set on input.
* @param y Array, size at least (1 +(m - 1)*abs(incy)). Before entry with non-zero beta,
* the incremented array y must contain the vector y.
* @param yOffset y offset
* @param incy Specifies the increment for the elements of y.
* The value of incy must not be zero.
* @param ev
* @tparam T
*/
def gemv[@specialized(Float, Double) T](trans: Char, m: Int, n: Int,
alpha: T,
a: Array[T], aOffset: Int, lda: Int,
x: Array[T], xOffset: Int, incx: Int,
beta: T,
y: Array[T], yOffset: Int, incy: Int)(implicit ev: TensorNumeric[T]): Unit = {
val start = System.nanoTime()
ev.gemv(trans, m, n, alpha, a, aOffset, lda, x, xOffset, incx, beta, y,
yOffset, incy)
time += (System.nanoTime() - start)
}
/**
* The ger routines perform a matrix-vector operation defined as
* A := alpha*x*y'+ A,
* where:
* alpha is a scalar,
* x is an m-element vector,
* y is an n-element vector,
* A is an m-by-n general matrix.
*
* this interface treat the input array as column-major array.
*
* @param m Specifies the number of rows of the matrix A.
* The value of m must be at least zero.
* @param n Specifies the number of columns of the matrix A.
* The value of n must be at least zero.
* @param alpha Specifies the scalar alpha.
* @param x Array, size at least (1 + (m - 1)*abs(incx)).
* Before entry, the incremented array x must contain the m-element vector x.
* @param xOffset x offset
* @param incx Specifies the increment for the elements of x.
* The value of incx must not be zero.
* @param y Array, size at least (1 + (n - 1)*abs(incy)).
* Before entry, the incremented array y must contain the n-element vector y.
* @param yOffset y offset
* @param incy Specifies the increment for the elements of y.
* The value of incy must not be zero.
* @param a Array, size lda * n. Before entry,
* the leading m-by-n part of the array a must contain the matrix A.
* @param aOffset a offset
* @param lda Specifies the leading dimension of a as declared in the calling (sub)program.
* the value of lda must be at least max(1, m).
* @param ev
* @tparam T
*/
def ger[@specialized(Float, Double) T](m: Int, n: Int,
alpha: T,
x: Array[T], xOffset: Int, incx: Int,
y: Array[T], yOffset: Int, incy: Int,
a: Array[T], aOffset: Int, lda: Int)(implicit ev: TensorNumeric[T]): Unit = {
val start = System.nanoTime()
ev.ger(m, n, alpha, x, xOffset, incx, y, yOffset, incy, a, aOffset, lda)
time += (System.nanoTime() - start)
}
/**
* to be fixed: this interface treat the input tensor as row-major array.
* @param alpha
* @param matrix
* @param vector
* @param beta
* @param r
* @param ev
* @tparam T
*/
def gemv[@specialized(Float, Double) T](alpha: T, matrix: Tensor[T], vector: Tensor[T],
beta: T, r: Tensor[T])(implicit ev: TensorNumeric[T]): Unit = {
require(matrix.size(2) == vector.size(1), "matrix vector size doesn't match")
require(matrix.size(1) == r.size(1), "matrix result size doesn't match")
if (matrix.stride(1) == 1) {
ev.gemv('N', matrix.size(1), matrix.size(2), alpha, matrix.storage().array(),
matrix.storageOffset() - 1,
matrix.stride(2), vector.storage().array(), vector.storageOffset() - 1, vector.stride(1),
beta, r.storage().array(),
r.storageOffset() - 1, r.stride(1))
} else if (matrix.stride(2) == 1) {
ev.gemv('T', matrix.size(2), matrix.size(1), alpha, matrix.storage().array(),
matrix.storageOffset() - 1,
matrix.stride(1), vector.storage().array(), vector.storageOffset() - 1,
vector.stride(1), beta, r.storage().array(),
r.storageOffset() - 1, r.stride(1))
} else {
val mat = matrix.contiguous()
ev.gemv('T', mat.size(2), mat.size(1), alpha, mat.storage().array(), mat.storageOffset() - 1,
mat.stride(1), vector.storage().array(), vector.storageOffset() - 1, vector.stride(1),
beta, r.storage().array(),
r.storageOffset() - 1, r.stride(1))
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy