com.intel.analytics.bigdl.tensor.DenseTensorConv.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath._
import scala.reflect.ClassTag
object DenseTensorConv {
def fullXCorr2Dptr[@specialized(Float, Double) T](output: Storage[T], _outputOffset: Int,
alpha: T, input: Storage[T], _inputOffset: Int,
nInputRows: Int, nInputCols: Int, kernel: Storage[T], _kernelOffset: Int,
nKernelRows: Int, nKernelCols: Int, srow: Int, scol: Int)(
implicit ev: TensorNumeric[T]): Unit = {
val nOuputCol = (nInputCols - 1) * scol + nKernelCols
var inputOffset = _inputOffset
var yy = 0
while (yy < nInputRows) {
var xx = 0
while (xx < nInputCols) {
var outputOffset = yy * srow * nOuputCol + xx * scol + _outputOffset
var kernelOffset = nKernelCols * nKernelRows - 1 + _kernelOffset
var ky = 0
while (ky < nKernelRows) {
val z = input(inputOffset)
var kx = 0
while (kx < nKernelCols) {
output(outputOffset + kx) = ev.plus(output(outputOffset + kx),
ev.times(z, kernel(kernelOffset - kx)))
kx += 1
}
outputOffset += nOuputCol
kernelOffset -= nKernelCols
ky += 1
}
inputOffset += 1
xx += 1
}
yy += 1
}
}
def fullConv2Dptr[@specialized(Float, Double) T](output: Storage[T], _outputOffset: Int,
alpha: T, input: Storage[T], _inputOffset: Int,
nInputRows: Int, nInputCols: Int, kernel: Storage[T], _kernelOffset: Int,
nKernelRows: Int, nKernelCols: Int, srow: Int, scol: Int)(
implicit ev: TensorNumeric[T]): Unit = {
val nOutputCol = (nInputCols - 1) * scol + nKernelCols
var inputOffset = _inputOffset
var yy = 0
while (yy < nInputRows) {
var xx = 0
while (xx < nInputCols) {
var outputOffset = yy * srow * nOutputCol + xx * scol + _outputOffset
var kernelOffset = _kernelOffset
var ky = 0
while (ky < nKernelRows) {
val z = ev.times(input(inputOffset), alpha)
var kx = 0
while (kx < nKernelCols) {
output(outputOffset + kx) = ev.plus(output(outputOffset + kx),
ev.times(z, kernel(kernelOffset + kx)))
kx += 1
}
outputOffset += nOutputCol
kernelOffset += nKernelCols
ky += 1
}
inputOffset += 1
xx += 1
}
yy += 1
}
}
def validConv2Dptr[@specialized(Float, Double) T](output: Storage[T], _outputOffset: Int,
alpha: T, input: Storage[T], _inputOffset: Int,
nInputRows: Int, nInputCols: Int, kernel: Storage[T], _kernelOffset: Int,
nKernelRows: Int, nKernelCols: Int, srow: Int, scol: Int)(
implicit ev: TensorNumeric[T]): Unit = {
val nOutputCol = (nInputCols - nKernelCols) / srow + 1
val nOutputRow = (nInputRows - nKernelRows) / scol + 1
var outputOffset = _outputOffset
var yy = 0
while (yy < nOutputRow) {
var xx = 0
while (xx < nOutputCol) {
var inputOffset = yy * srow * nInputCols + xx * scol + _inputOffset
var kernelOffset = nKernelRows * nKernelCols - 1 + _kernelOffset
var sum = ev.fromType[Int](0)
var ky = 0
while (ky < nKernelRows) {
var kx = 0
while (kx < nKernelCols) {
sum = ev.plus(sum, ev.times(input(inputOffset + kx), kernel(kernelOffset - kx)))
kx += 1
}
inputOffset += nInputCols
kernelOffset -= nKernelCols
ky += 1
}
output(outputOffset) = ev.plus(output(outputOffset), ev.times(alpha, sum))
outputOffset += 1
xx += 1
}
yy += 1
}
}
def validXCorr2Dptr[@specialized(Float, Double) T](output: Storage[T], _outputOffset: Int,
alpha: T, input: Storage[T], _inputOffset: Int,
nInputRows: Int, nInputCols: Int, kernel: Storage[T], _kernelOffset: Int, nKernelRows: Int,
nKernelCols: Int, srow: Int, scol: Int)(implicit ev: TensorNumeric[T]): Unit = {
val nOutputCol = (nInputCols - nKernelCols) / srow + 1
val nOutputRow = (nInputRows - nKernelRows) / scol + 1
var outputOffset = _outputOffset
var yy = 0
while (yy < nOutputRow) {
var xx = 0
while (xx < nOutputCol) {
var inputOffset = yy * srow * nInputCols + xx * scol + _inputOffset
var kernelOffset = _kernelOffset
var sum: T = ev.fromType[Int](0)
var ky = 0
while (ky < nKernelRows) {
var kx = 0
while (kx < nKernelCols) {
sum = ev.plus(sum, ev.times(input(inputOffset + kx), kernel(kernelOffset + kx)))
kx += 1
}
inputOffset += nInputCols
kernelOffset += nKernelCols
ky += 1
}
output(outputOffset) = ev.plus(output(outputOffset), ev.times(alpha, sum))
outputOffset += 1
xx += 1
}
yy += 1
}
}
def conv2d[@specialized(Float, Double) T](output: Storage[T], _outputOffset: Int, alpha: T,
input: Storage[T], _inputOffset: Int,
nInputRows: Int, nInputCols: Int, kernel: Storage[T], _kernelOffset: Int, nKernelRows: Int,
nKernelCols: Int, srow: Int, scol: Int, vf: Char, xc: Char)(
implicit ev: TensorNumeric[T]): Unit = {
require(vf == 'F' || vf == 'V', "type of convolution can be 'V' or 'F'")
require(xc == 'X' || xc == 'C', "type of convolution can be 'X' or 'C'")
if (vf == 'F') {
if (xc == 'X') {
fullXCorr2Dptr(output, _outputOffset, alpha, input, _inputOffset, nInputRows,
nInputCols, kernel, _kernelOffset, nKernelRows, nKernelCols, srow, scol)
} else {
fullConv2Dptr(output, _outputOffset, alpha, input, _inputOffset, nInputRows,
nInputCols, kernel, _kernelOffset, nKernelRows, nKernelCols, srow, scol)
}
} else {
if (xc == 'X') {
validXCorr2Dptr(output, _outputOffset, alpha, input, _inputOffset, nInputRows,
nInputCols, kernel, _kernelOffset, nKernelRows, nKernelCols, srow, scol)
} else {
validConv2Dptr(output, _outputOffset, alpha, input, _inputOffset, nInputRows,
nInputCols, kernel, _kernelOffset, nKernelRows, nKernelCols, srow, scol)
}
}
}
def validXCorr2DRevptr[@specialized(Float, Double) T](gradWeight: Storage[T],
_gradWeightOffset: Int, alpha: T, input: Storage[T], _inputOffset: Int,
ir: Int, ic: Int, output: Storage[T], _outputOffset: Int, kr: Int,
kc: Int, sr: Int, sc: Int)(implicit ev: TensorNumeric[T]): Unit = {
val or = ir - (kr - 1) * sr
val oc = ic - (kc - 1) * sc
var yy = 0
while (yy < kr) {
var xx = 0
while (xx < kc) {
var gradWeightOffset = _gradWeightOffset // po
var inputOffset = _inputOffset + yy * sr * ic + xx * sc // pi
val z = ev.times(output(_outputOffset + yy * kc + xx), alpha)
var ky = 0
while (ky < or) {
var kx = 0
while (kx < oc) {
gradWeight(kx + gradWeightOffset) = ev.plus(gradWeight(kx + gradWeightOffset),
ev.times(z, input(kx + inputOffset)))
kx += 1
}
gradWeightOffset += oc
inputOffset += ic
ky += 1
}
xx += 1
}
yy += 1
}
}
def conv2Dmul[@specialized(Float, Double) T: ClassTag](alpha: T, t: Tensor[T], k: Tensor[T],
srow: Int, scol: Int, vf: Char, xc: Char)(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(t.nDimension() == 2, "input: 2D Tensor expected")
require(k.nDimension() == 2, "kernel: 2D Tensor expected")
require(srow >= 1, "Stride should be a positive integer")
require(scol >= 1, "Stride should be a positive integer")
val input = t.contiguous()
val kernel = k.contiguous()
val nInputRows = input.size(1)
val nInputCols = input.size(2)
val nKernelRows = kernel.size(1)
val nKernelCols = kernel.size(2)
require((nInputRows >= nKernelRows && nInputCols >= nKernelCols) || vf == 'F',
"conv2Dmul : Input image is smaller than kernel")
val nOutputRows = convSize(nInputRows, nKernelRows, srow, vf)
val nOutputCols = convSize(nInputCols, nKernelCols, scol, vf)
val result = Tensor[T](nOutputRows, nOutputCols)
conv2d(result.storage(), result.storageOffset() - 1, alpha, input.storage(),
input.storageOffset() - 1, nInputRows, nInputCols, kernel.storage(),
kernel.storageOffset() - 1, nKernelRows, nKernelCols,
srow, scol, vf, xc)
result
}
def convSize(x: Int, k: Int, s: Int, vf: Char): Int = {
require(vf == 'F' || vf == 'V', "type of convolution can be 'V' or 'F'")
if (vf == 'V') {
(x - k) / s + 1
} else {
(x - 1) * s + k
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy