com.intel.analytics.bigdl.tensor.TensorNumeric.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.tensor
import java.util
import com.intel.analytics.bigdl.mkl.MKL
import com.intel.analytics.bigdl.utils.RandomGenerator._
/**
* class of math operation
*/
class TensorNumericMath
/**
* Math operation for tensor
*/
object TensorNumericMath {
type NumericWildCard = Any
/**
* This type is used to denote that the numeric type of tensor is not restricted.
* The use-case usually is used to do some tensor operations when we do not make sure
* their concrete types, but they must have the same type.
*
* For example if we want to copy tensor1 from tensor2, and we only know they are
* the same type tensor without the information about their concrete type.
*
* We can use the following code:
*
* `tensor1.asInstanceOf[Tensor[NumericWildcard]]
* .copy(tensor2.asInstanceOf[Tensor[NumericWildcard]])`
*/
type NumericWildcard = Any
/**
* define tensor math operation
*/
trait TensorNumeric[@specialized(Float, Double) T] extends Serializable {
def one: T = fromType[Int](1)
def zero: T = fromType[Int](0)
def plus(x: T, y: T): T
def minus(x: T, y: T): T
def times(x: T, y: T): T
def divide(x: T, y: T): T
def exp(x: T): T
def log(x: T): T
def max(x: T, y: T): T
def min(x: T, y: T): T
def sqrt(x: T): T
def tanh(x: T): T
def abs(x: T): T
def or(x: T, y: T): T
def and(x: T, y: T): T
def negative(x: T): T
def pow(x: T): T
def pow(x: T, y: T): T
def log1p(x: T): T
def isGreater(x: T, y: T): Boolean
def isGreaterEq(x: T, y: T): Boolean
def rand(): T
def randn(): T
def gemm(transa: Char, transb: Char, m: Int, n: Int, k: Int, alpha: T, a: Array[T],
aOffset: Int, lda: Int, b: Array[T], bOffset: Int, ldb: Int,
beta: T, c: Array[T], cOffset: Int, ldc: Int)
def gemv(trans: Char, m: Int, n: Int, alpha: T, a: Array[T], aoffset: Int, lda: Int,
x: Array[T], xOffset: Int, incx: Int, beta: T, y: Array[T], yOffset: Int, incy: Int)
def axpy(n: Int, da: T, dx: Array[T], _dx_offset: Int, incx: Int, dy: Array[T],
_dy_offset: Int, incy: Int)
def dot(n: Int, dx: Array[T], _dx_offset: Int, incx: Int, dy: Array[T], _dy_offset: Int,
incy: Int): T
def ger(m: Int, n: Int, alpha: T, x: Array[T], _x_offset: Int, incx: Int, y: Array[T],
_y_offset: Int,
incy: Int, a: Array[T], _a_offset: Int, lda: Int)
def fill(data: Array[T], fromIndex: Int, toIndex: Int, value: T): Unit
def fromType[K](k: K)(implicit c: ConvertableFrom[K]): T
def toType[K](t: T)(implicit c: ConvertableTo[K]): K
def vPowx(n: Int, a: Array[T], aOffset: Int, b: T, y: Array[T], yOffset: Int): Unit
def vLn(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def vExp(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def vSqrt(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def vTanh(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def vAbs(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def vLog1p(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit
def scal(n: Int, sa: T, sx: Array[T], offset: Int, incx: Int): Unit
def inv(v: T): T
def erf(v: T): T
def erfc(v: T): T
def logGamma(v: T): T
def digamma(v: T): T
def add(n: Int, a: Array[T], offset: Int, v: T, stride: Int): Unit
def sub(n: Int, a: Array[T], offset: Int, v: T, stride: Int): Unit
def vAdd(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit
def vSub(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit
def vMul(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit
def vDiv(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit
def sum(n: Int, a: Array[T], aOffset: Int, stride: Int): T
def prod(n: Int, a: Array[T], aOffset: Int, stride: Int): T
def arraycopy(src: Array[T], srcPos: Int,
dest: Array[T], destPos: Int, length: Int): Unit
def getType(): TensorDataType
def addcmul(value: T, n: Int,
self: Array[T], selfOffset: Int,
a: Array[T], aOffset: Int,
b: Array[T], bOffset: Int): Unit
def addcdiv(value: T, n: Int,
self: Array[T], selfOffset: Int,
a: Array[T], aOffset: Int,
b: Array[T], bOffset: Int): Unit
def nearlyEqual(a: T, b: T, epsilon: Double): Boolean
def floor(a: T): T
def ceil(a: T): T
def isFinite(a: T): Boolean
def isNan(a: T): Boolean
def isInf(a: T): Boolean
def round(a: T): T
def truncate(a: T): T
def floorDiv(a: T, b: T): T
def clip(a: T, lower: T, upper: T): T
}
/**
* define tensor math operation
*/
abstract class UndefinedTensorNumeric[@specialized(Float, Double) T](typeName: String)
extends TensorNumeric[T] {
def plus(x: T, y: T): T =
throw new UnsupportedOperationException(typeName
+ " in tensor does not support plus operation")
def minus(x: T, y: T): T =
throw new UnsupportedOperationException(typeName
+ " in tensor does not support minus operation")
def times(x: T, y: T): T =
throw new UnsupportedOperationException(typeName
+ " in tensor does not support times operation")
def divide(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support divide operation")
def exp(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support exp operation")
def prod(n: Int, a: Array[T], aOffset: Int, stride: Int): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support prod operation")
def log(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support log operation")
def max(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support max operation")
def min(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support min operation")
def sqrt(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support sqrt operation")
def tanh(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support tanh operation")
def abs(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support abs operation")
def or(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support or operation")
def and(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support and operation")
def negative(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support negative operation")
def pow(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support pow operation")
def pow(x: T, y: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support pow operation")
def log1p(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support log1p operation")
def isGreater(x: T, y: T): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support isGreater operation")
def isGreaterEq(x: T, y: T): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support isGreaterEq operation")
def rand(): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support rand operation")
def randn(): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support randn operation")
def gemm(transa: Char, transb: Char, m: Int, n: Int, k: Int, alpha: T, a: Array[T],
aOffset: Int, lda: Int, b: Array[T], bOffset: Int, ldb: Int,
beta: T, c: Array[T], cOffset: Int, ldc: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support gemm operation")
def gemv(trans: Char, m: Int, n: Int, alpha: T, a: Array[T], aoffset: Int, lda: Int,
x: Array[T], xOffset: Int, incx: Int, beta: T, y: Array[T], yOffset: Int, incy: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support gemv operation")
def axpy(n: Int, da: T, dx: Array[T], _dx_offset: Int, incx: Int, dy: Array[T],
_dy_offset: Int, incy: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support axpy operation")
def dot(n: Int, dx: Array[T], _dx_offset: Int, incx: Int, dy: Array[T], _dy_offset: Int,
incy: Int): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support dot operation")
def ger(m: Int, n: Int, alpha: T, x: Array[T], _x_offset: Int, incx: Int, y: Array[T],
_y_offset: Int,
incy: Int, a: Array[T], _a_offset: Int, lda: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support ger operation")
def fill(data: Array[T], fromIndex: Int, toIndex: Int, value: T): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support fill operation")
def fromType[K](k: K)(implicit c: ConvertableFrom[K]): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support fromType operation")
def toType[K](t: T)(implicit c: ConvertableTo[K]): K =
throw new UnsupportedOperationException(typeName +
" in tensor does not support toType operation")
def vPowx(n: Int, a: Array[T], aOffset: Int, b: T, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vPowx operation")
def vLn(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vLn operation")
def vExp(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vLn operation")
def vSqrt(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vSqrt operation")
def vTanh(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vTanh operation")
def vAbs(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vAbs operation")
def vLog1p(n: Int, a: Array[T], aOffset: Int, y: Array[T], yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vLog1p operation")
def scal(n: Int, sa: T, sx: Array[T], offset: Int, incx: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support scal operation")
def inv(v: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support inv operation")
def add(n: Int, a: Array[T], offset: Int, v: T, stride: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support add operation")
def sub(n: Int, a: Array[T], offset: Int, v: T, stride: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support sub operation")
def vAdd(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vAdd operation")
def vSub(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vSub operation")
def vMul(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vMul operation")
def vDiv(n: Int, a: Array[T], aOffset: Int, b: Array[T], bOffset: Int, y: Array[T],
yOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support vDiv operation")
def sum(n: Int, a: Array[T], aOffset: Int, stride: Int): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support sum operation")
def arraycopy(src: Array[T], srcPos: Int,
dest: Array[T], destPos: Int, length: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support arraycopy operation")
def getType(): TensorDataType =
throw new UnsupportedOperationException(typeName +
" in tensor does not support getType operation")
def addcmul(value: T, n: Int,
self: Array[T], selfOffset: Int,
a: Array[T], aOffset: Int,
b: Array[T], bOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support addcmul operation")
def addcdiv(value: T, n: Int,
self: Array[T], selfOffset: Int,
a: Array[T], aOffset: Int,
b: Array[T], bOffset: Int): Unit =
throw new UnsupportedOperationException(typeName +
" in tensor does not support addcdiv operation")
def nearlyEqual(a: T, b: T, epsilon: Double): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support nearlyEqual operation")
override def floor(a: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support floor operation")
override def ceil(a: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support ceil operation")
override def isInf(a: T): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support isInf operation")
override def isFinite(a: T): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support isFinite operation")
override def isNan(a: T): Boolean =
throw new UnsupportedOperationException(typeName +
" in tensor does not support isNan operation")
override def round(a: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support round operation")
override def truncate(a: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support truncate operation")
override def floorDiv(a: T, b: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support floorDiv operation")
def clip(a: T, lower: T, upper: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support clip operation")
def erf(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support erf operation")
def erfc(x: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support erf operation")
def logGamma(v: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support erf operation")
def digamma(v: T): T =
throw new UnsupportedOperationException(typeName +
" in tensor does not support erf operation")
}
/**
* Numerical operation for type T
*/
class TensorNumericOps[@specialized(Float, Double) T](lhs: T)(implicit ev: TensorNumeric[T]) {
// scalastyle:off methodName
def +(rhs: T): T = ev.plus(lhs, rhs)
def -(rhs: T): T = ev.minus(lhs, rhs)
def *(rhs: T): T = ev.times(lhs, rhs)
def /(rhs: T): T = ev.divide(lhs, rhs)
// scalastyle:on methodName
}
object TensorNumeric {
implicit object NumericFloat extends UndefinedTensorNumeric[Float]("Float") {
override def plus(x: Float, y: Float): Float = x + y
override def minus(x: Float, y: Float): Float = x - y
override def times(x: Float, y: Float): Float = x * y
override def divide(x: Float, y: Float): Float = x / y
override def exp(x: Float): Float = java.lang.Math.exp(x).toFloat
override def log(x: Float): Float = java.lang.Math.log(x).toFloat
override def max(x: Float, y: Float): Float = java.lang.Math.max(x, y)
override def min(x: Float, y: Float): Float = java.lang.Math.min(x, y)
override def sqrt(x: Float): Float = Math.sqrt(x.toDouble).toFloat
override def tanh(x: Float): Float = Math.tanh(x.toDouble).toFloat
override def abs(x: Float): Float = Math.abs(x)
override def negative(x: Float): Float = -x
override def pow(x: Float): Float = Math.pow(x, -1).toFloat
override def pow(x: Float, y: Float): Float = Math.pow(x, y).toFloat
override def log1p(x: Float): Float = Math.log1p(x).toFloat
override def isGreater(x: Float, y: Float): Boolean = x > y
override def isGreaterEq(x: Float, y: Float): Boolean = x >= y
override def rand(): Float = RNG.uniform(0, 1).toFloat
override def randn(): Float = RNG.normal(0, 1).toFloat
override def gemm(transa: Char, transb: Char, m: Int, n: Int, k: Int, alpha: Float,
a: Array[Float], aOffset: Int, lda: Int, b: Array[Float], bOffset: Int, ldb: Int,
beta: Float, c: Array[Float], cOffset: Int, ldc: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsgemm(transa, transb, m, n, k, alpha, a, aOffset, lda, b, bOffset,
ldb, beta, c, cOffset, ldc)
}
override def gemv(trans: Char, m: Int, n: Int, alpha: Float,
a: Array[Float], aoffset: Int, lda: Int,
x: Array[Float], xOffset: Int, incx: Int, beta: Float,
y: Array[Float], yOffset: Int,
incy: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsgemv(trans, m, n, alpha, a, aoffset, lda, x, xOffset,
incx, beta, y, yOffset, incy)
}
override def axpy(n: Int, da: Float, dx: Array[Float], _dx_offset: Int,
incx: Int, dy: Array[Float],
_dy_offset: Int, incy: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsaxpy(n, da, dx, _dx_offset, incx, dy, _dy_offset, incy) }
override def dot(n: Int, dx: Array[Float], _dx_offset: Int, incx: Int, dy: Array[Float],
_dy_offset: Int, incy: Int): Float = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsdot(n, dx, _dx_offset, incx, dy, _dy_offset, incy) }
override def ger(m: Int, n: Int, alpha: Float, x: Array[Float], _x_offset: Int, incx: Int,
y: Array[Float], _y_offset: Int,
incy: Int, a: Array[Float], _a_offset: Int, lda: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsger(m, n, alpha, x, _x_offset, incx, y, _y_offset,
incy, a, _a_offset, lda)
}
override def fill(data: Array[Float], fromIndex: Int, toIndex: Int, value: Float): Unit = {
util.Arrays.fill(data, fromIndex, toIndex, value)
}
override def fromType[@specialized(Float, Double, Int) K](k: K)(
implicit c: ConvertableFrom[K]): Float =
c.toFloat(k)
override def toType[@specialized(Float, Double, Int) K]
(t: Float)(implicit c: ConvertableTo[K]): K = c.fromFloat(t)
override def getType(): TensorDataType = FloatType
override def vPowx(n: Int, a: Array[Float], aOffset: Int, b: Float, y: Array[Float],
yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsPowx(n, a, aOffset, b, y, yOffset)
}
override def vLn(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsLn(n, a, aOffset, y, yOffset)
}
override def vExp(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsExp(n, a, aOffset, y, yOffset)
}
override def vSqrt(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsSqrt(n, a, aOffset, y, yOffset)
}
override def vTanh(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsTanh(n, a, aOffset, y, yOffset)
}
override def vAbs(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsAbs(n, a, aOffset, y, yOffset)
}
override def vLog1p(n: Int, a: Array[Float], aOffset: Int, y: Array[Float], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsLog1p(n, a, aOffset, y, yOffset)
}
override def scal(n: Int, sa: Float, sx: Array[Float], offset: Int, incx: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsscal(n, sa, sx, offset, incx)
}
override def inv(v: Float): Float = 1 / v
override def add(n: Int, a: Array[Float], offset: Int, v: Float, stride: Int): Unit = {
var i = 0
while (i < n) {
a(offset + i * stride) += v
i += 1
}
}
override def sub(n: Int, a: Array[Float], offset: Int, v: Float, stride: Int): Unit = {
var i = 0
while (i < n) {
a(offset + i * stride) -= v
i += 1
}
}
override def vAdd(n: Int, a: Array[Float], aOffset: Int, b: Array[Float], bOffset: Int,
y: Array[Float], yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsAdd(n, a, aOffset, b, bOffset, y, yOffset)
}
override def vSub(n: Int, a: Array[Float], aOffset: Int, b: Array[Float], bOffset: Int,
y: Array[Float], yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vsSub(n, a, aOffset, b, bOffset, y, yOffset)
}
override def vMul(n: Int, a: Array[Float], aOffset: Int, b: Array[Float], bOffset: Int,
y: Array[Float], yOffset: Int): Unit = {
if (MKL.isMKLLoaded) {
MKL.vsMul(n, a, aOffset, b, bOffset, y, yOffset)
} else {
var i = 0
while (i < n) {
y(yOffset + i) = a(aOffset + i) * b(bOffset + i)
i += 1
}
}
}
override def vDiv(n: Int, a: Array[Float], aOffset: Int, b: Array[Float], bOffset: Int,
y: Array[Float], yOffset: Int): Unit = {
if (MKL.isMKLLoaded) {
MKL.vsDiv(n, a, aOffset, b, bOffset, y, yOffset)
} else {
var i = 0
while (i < n) {
y(yOffset + i) = a(aOffset + i) / b(bOffset + i)
i += 1
}
}
}
override def prod(n: Int, a: Array[Float], aOffset: Int, stride: Int): Float = {
var i = 0
var r = 1.0f
while (i < n) {
r *= a(aOffset + i * stride)
i += 1
}
r
}
override def sum(n: Int, a: Array[Float], aOffset: Int, stride: Int): Float = {
var i = 0
var r = 0.0f
while (i < n) {
r += a(aOffset + i * stride)
i += 1
}
r
}
override def arraycopy(
src: Array[Float],
srcPos: Int,
dest: Array[Float],
destPos: Int,
length: Int): Unit = {
System.arraycopy(src, srcPos, dest, destPos, length)
}
override def nearlyEqual(a: Float, b: Float, epsilon: Double): Boolean = {
val absA = math.abs(a)
val absB = math.abs(b)
val diff = math.abs(a - b)
val result = if (a == b) {
true
} else if (a == 0 || b == 0 || diff < java.lang.Float.MIN_NORMAL) {
diff < (epsilon * java.lang.Float.MIN_NORMAL)
} else {
diff / (absA + absB) < epsilon
}
result
}
override def addcmul(value: Float, n: Int,
self: Array[Float], selfOffset: Int,
a: Array[Float], aOffset: Int,
b: Array[Float], bOffset: Int): Unit = {
val v = value.asInstanceOf[Float]
var i = 0
while (i < n) {
self(i + selfOffset) += a(aOffset + i) * b(bOffset + i) * v
i += 1
}
}
override def addcdiv(value: Float, n: Int,
self: Array[Float], selfOffset: Int,
a: Array[Float], aOffset: Int,
b: Array[Float], bOffset: Int): Unit = {
val v = value.asInstanceOf[Float]
var i = 0
while (i < n) {
self(i + selfOffset) += a(aOffset + i) / b(bOffset + i) * v
i += 1
}
}
override def floor(a: Float): Float = math.floor(a).toFloat
override def ceil(a: Float): Float = math.ceil(a).toFloat
override def isFinite(a: Float): Boolean = !java.lang.Float.isInfinite(a)
override def isNan(a: Float): Boolean = java.lang.Float.isNaN(a)
override def isInf(a: Float): Boolean = java.lang.Float.isInfinite(a)
override def round(a: Float): Float = Math.round(a).toFloat
override def truncate(a: Float): Float = {
if (a >= 0) {
Math.floor(a).toFloat
} else if (a == Math.floor(a)) {
a
} else {
Math.floor(a).toFloat + 1
}
}
override def floorDiv(a: Float, b: Float): Float = {
Math.floor(a / b).toFloat
}
override def clip(a: Float, lower: Float, upper: Float): Float = {
require(lower <= upper, "lower bound must be less or equal than upper bound")
math.min(math.max(a, lower), upper)
}
override def erf(a: Float): Float = org.apache.commons.math3.special.Erf.erf(a).toFloat
override def erfc(a: Float): Float = org.apache.commons.math3.special.Erf.erfc(a).toFloat
override def logGamma(a: Float): Float =
org.apache.commons.math3.special.Gamma.logGamma(a).toFloat
override def digamma(a: Float): Float =
org.apache.commons.math3.special.Gamma.digamma(a).toFloat
}
implicit object NumericDouble extends UndefinedTensorNumeric[Double]("Double") {
override def plus(x: Double, y: Double): Double = x + y
override def minus(x: Double, y: Double): Double = x - y
override def times(x: Double, y: Double): Double = x * y
override def divide(x: Double, y: Double): Double = x / y
override def exp(x: Double): Double = java.lang.Math.exp(x)
override def log(x: Double): Double = java.lang.Math.log(x)
override def max(x: Double, y: Double): Double = java.lang.Math.max(x, y)
override def min(x: Double, y: Double): Double = java.lang.Math.min(x, y)
override def sqrt(x: Double): Double = Math.sqrt(x)
override def tanh(x: Double): Double = Math.tanh(x)
override def abs(x: Double): Double = Math.abs(x)
override def negative(x: Double): Double = -x
override def pow(x: Double): Double = Math.pow(x, -1)
override def pow(x: Double, y: Double): Double = Math.pow(x, y)
override def log1p(x: Double): Double = Math.log1p(x)
override def isGreater(x: Double, y: Double): Boolean = x > y
override def isGreaterEq(x: Double, y: Double): Boolean = x >= y
override def rand(): Double = RNG.uniform(0, 1)
override def randn(): Double = RNG.normal(0, 1)
override def gemm(transa: Char, transb: Char, m: Int, n: Int, k: Int, alpha: Double,
a: Array[Double], aOffset: Int, lda: Int, b: Array[Double], bOffset: Int, ldb: Int,
beta: Double, c: Array[Double], cOffset: Int, ldc: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdgemm(transa, transb, m, n, k, alpha, a, aOffset, lda, b,
bOffset, ldb, beta, c, cOffset, ldc)
}
override def gemv(trans: Char, m: Int, n: Int, alpha: Double, a: Array[Double], aoffset: Int,
lda: Int, x: Array[Double], xOffset: Int, incx: Int, beta: Double, y: Array[Double],
yOffset: Int, incy: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdgemv(trans, m, n, alpha, a, aoffset, lda, x, xOffset,
incx, beta, y, yOffset, incy)
}
override def axpy(n: Int, da: Double, dx: Array[Double], _dx_offset: Int, incx: Int,
dy: Array[Double], _dy_offset: Int, incy: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdaxpy(n, da, dx, _dx_offset, incx, dy, _dy_offset, incy)
}
override def dot(n: Int, dx: Array[Double], _dx_offset: Int, incx: Int, dy: Array[Double],
_dy_offset: Int, incy: Int): Double = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vddot(n, dx, _dx_offset, incx, dy, _dy_offset, incy)
}
override def ger(m: Int, n: Int, alpha: Double, x: Array[Double], _x_offset: Int, incx: Int,
y: Array[Double], _y_offset: Int,
incy: Int, a: Array[Double], _a_offset: Int, lda: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdger(m, n, alpha, x, _x_offset, incx, y, _y_offset,
incy, a, _a_offset, lda)
}
override def fill(data: Array[Double], fromIndex: Int, toIndex: Int, value: Double): Unit = {
util.Arrays.fill(data, fromIndex, toIndex, value)
}
override def fromType[@specialized(Float, Double, Int) K](k: K)(
implicit c: ConvertableFrom[K]): Double =
c.toDouble(k)
override def toType[@specialized(Float, Double, Int) K](t: Double)
(implicit c: ConvertableTo[K]): K = c.fromDouble(t)
override def getType(): TensorDataType = DoubleType
override def vPowx(n: Int, a: Array[Double], aOffset: Int, b: Double, y: Array[Double],
yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdPowx(n, a, aOffset, b, y, yOffset)
}
override def vLn(n: Int, a: Array[Double], aOffset: Int, y: Array[Double],
yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdLn(n, a, aOffset, y, yOffset)
}
override def vExp(n: Int, a: Array[Double], aOffset: Int, y: Array[Double],
yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdExp(n, a, aOffset, y, yOffset)
}
override def vSqrt(n: Int, a: Array[Double], aOffset: Int, y: Array[Double],
yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdSqrt(n, a, aOffset, y, yOffset)
}
override def vTanh(n: Int, a: Array[Double], aOffset: Int, y: Array[Double], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdTanh(n, a, aOffset, y, yOffset)
}
override def vAbs(n: Int, a: Array[Double], aOffset: Int, y: Array[Double], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdAbs(n, a, aOffset, y, yOffset)
}
override def vLog1p(n: Int, a: Array[Double], aOffset: Int, y: Array[Double], yOffset: Int)
: Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdLog1p(n, a, aOffset, y, yOffset)
}
override def scal(n: Int, sa: Double, sx: Array[Double], offset: Int, incx: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdscal(n, sa, sx, offset, incx)
}
override def inv(v: Double): Double = 1 / v
override def add(n: Int, a: Array[Double], offset: Int, v: Double, stride: Int): Unit = {
var i = 0
while (i < n) {
a(offset + i * stride) += v
i += 1
}
}
override def sub(n: Int, a: Array[Double], offset: Int, v: Double, stride: Int): Unit = {
var i = 0
while (i < n) {
a(offset + i * stride) -= v
i += 1
}
}
override def vAdd(n: Int, a: Array[Double], aOffset: Int, b: Array[Double], bOffset: Int,
y: Array[Double], yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdAdd(n, a, aOffset, b, bOffset, y, yOffset)
}
override def vSub(n: Int, a: Array[Double], aOffset: Int, b: Array[Double], bOffset: Int,
y: Array[Double], yOffset: Int): Unit = {
require(MKL.isMKLLoaded, "mkl isn't loaded")
MKL.vdSub(n, a, aOffset, b, bOffset, y, yOffset)
}
override def vMul(n: Int, a: Array[Double], aOffset: Int, b: Array[Double], bOffset: Int,
y: Array[Double], yOffset: Int): Unit = {
if (MKL.isMKLLoaded) {
MKL.vdMul(n, a, aOffset, b, bOffset, y, yOffset)
} else {
var i = 0
while (i < n) {
y(yOffset + i) = a(aOffset + i) * b(bOffset + i)
i += 1
}
}
}
override def vDiv(n: Int, a: Array[Double], aOffset: Int, b: Array[Double], bOffset: Int,
y: Array[Double], yOffset: Int): Unit = {
if (MKL.isMKLLoaded) {
MKL.vdDiv(n, a, aOffset, b, bOffset, y, yOffset)
} else {
var i = 0
while (i < n) {
y(yOffset + i) = a(aOffset + i) / b(bOffset + i)
i += 1
}
}
}
override def prod(n: Int, a: Array[Double], aOffset: Int, stride: Int): Double = {
var i = 0
var r = 1.0
while (i < n) {
r *= a(aOffset + i * stride)
i += 1
}
r
}
override def sum(n: Int, a: Array[Double], aOffset: Int, stride: Int): Double = {
var i = 0
var r = 0.0
while (i < n) {
r += a(aOffset + i * stride)
i += 1
}
r
}
override def arraycopy(
src: Array[Double],
srcPos: Int,
dest: Array[Double],
destPos: Int,
length: Int): Unit = {
System.arraycopy(src, srcPos, dest, destPos, length)
}
override def nearlyEqual(a: Double, b: Double, epsilon: Double): Boolean = {
val absA = math.abs(a)
val absB = math.abs(b)
val diff = math.abs(a - b)
val result = if (a == b) {
true
} else if (a == 0 || b == 0 || diff < java.lang.Double.MIN_NORMAL) {
diff < (epsilon * java.lang.Double.MIN_NORMAL)
} else {
diff / (absA + absB) < epsilon
}
if (!result) {
if (a == b) {
true
} else if (a == 0 || b == 0 || diff < java.lang.Double.MIN_NORMAL) {
diff < (epsilon * java.lang.Double.MIN_NORMAL)
} else {
diff / (absA + absB) < epsilon
}
}
result
}
override def addcmul(value: Double, n: Int,
self: Array[Double], selfOffset: Int,
a: Array[Double], aOffset: Int,
b: Array[Double], bOffset: Int): Unit = {
val v = value.asInstanceOf[Double]
var i = 0
while (i < n) {
self(i + selfOffset) += a(aOffset + i) * b(bOffset + i) * v
i += 1
}
}
override def addcdiv(value: Double, n: Int,
self: Array[Double], selfOffset: Int,
a: Array[Double], aOffset: Int,
b: Array[Double], bOffset: Int): Unit = {
val v = value.asInstanceOf[Double]
var i = 0
while (i < n) {
self(i + selfOffset) += a(aOffset + i) / b(bOffset + i) * v
i += 1
}
}
override def floor(a: Double): Double = math.floor(a)
override def ceil(a: Double): Double = math.ceil(a)
override def isFinite(a: Double): Boolean = !java.lang.Double.isInfinite(a)
override def isNan(a: Double): Boolean = java.lang.Double.isNaN(a)
override def isInf(a: Double): Boolean = java.lang.Double.isInfinite(a)
override def round(a: Double): Double = Math.round(a).toDouble
override def truncate(a: Double): Double = {
if (a >= 0) {
Math.floor(a)
} else if (a == Math.floor(a)) {
a
} else {
Math.floor(a) + 1
}
}
override def floorDiv(a: Double, b: Double): Double = {
Math.floor(a / b)
}
override def clip(a: Double, lower: Double, upper: Double): Double = {
require(lower <= upper, "lower bound must be less or equal than upper bound")
math.min(math.max(a, lower), upper)
}
override def erf(a: Double): Double = org.apache.commons.math3.special.Erf.erf(a)
override def erfc(a: Double): Double = org.apache.commons.math3.special.Erf.erfc(a)
override def logGamma(a: Double): Double =
org.apache.commons.math3.special.Gamma.logGamma(a)
override def digamma(a: Double): Double =
org.apache.commons.math3.special.Gamma.digamma(a)
}
implicit object NumericString extends UndefinedTensorNumeric[String]("String") {
override def plus(x: String, y: String): String = x + y
override def getType(): TensorDataType = StringType
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): String =
c.toString(k)
override def axpy(n: Int, da: String, dx: Array[String], _dx_offset: Int,
incx: Int, dy: Array[String],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = dx(_dx_offset + i) + dy(_dy_offset + i)
i += 1
}
}
override def nearlyEqual(a: String, b: String, epsilon: Double): Boolean = {
a == b
}
}
implicit object NumericBoolean extends UndefinedTensorNumeric[Boolean]("Boolean") {
override def getType(): TensorDataType = BooleanType
override def or(x: Boolean, y: Boolean): Boolean = x || y
override def and(x: Boolean, y: Boolean): Boolean = x && y
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Boolean =
c.toBoolean(k)
override def toType[K](t: Boolean)(
implicit c: ConvertableTo[K]): K = c.fromBoolean(t)
override def nearlyEqual(a: Boolean, b: Boolean, epsilon: Double): Boolean = {
a == b
}
}
implicit object NumericInt extends UndefinedTensorNumeric[Int]("Int") {
override def getType(): TensorDataType = IntType
override def plus(x: Int, y: Int): Int = x + y
override def minus(x: Int, y: Int): Int = x - y
override def times(x: Int, y: Int): Int = x * y
override def divide(x: Int, y: Int): Int = x / y
override def exp(x: Int): Int = java.lang.Math.exp(x).toInt
override def log(x: Int): Int = java.lang.Math.log(x).toInt
override def max(x: Int, y: Int): Int = java.lang.Math.max(x, y)
override def min(x: Int, y: Int): Int = java.lang.Math.min(x, y)
override def sqrt(x: Int): Int = Math.sqrt(x.toDouble).toInt
override def tanh(x: Int): Int = Math.tanh(x.toDouble).toInt
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Int =
c.toInt(k)
override def toType[K](t: Int)
(implicit c: ConvertableTo[K]): K = c.fromInt(t)
override def axpy(n: Int, da: Int, dx: Array[Int], _dx_offset: Int,
incx: Int, dy: Array[Int],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = dx(_dx_offset + i) + dy(_dy_offset + i)
i += 1
}
}
override def abs(x: Int): Int = Math.abs(x)
override def negative(x: Int): Int = -x
override def pow(x: Int): Int = Math.pow(x, -1).toInt
override def pow(x: Int, y: Int): Int = Math.pow(x, y).toInt
override def log1p(x: Int): Int = Math.log1p(x).toInt
override def isGreater(x: Int, y: Int): Boolean = x > y
override def isGreaterEq(x: Int, y: Int): Boolean = x >= y
override def nearlyEqual(a: Int, b: Int, epsilon: Double): Boolean = a == b
override def prod(n: Int, a: Array[Int], aOffset: Int, stride: Int): Int = {
var i = 0
var r = 1
while (i < n) {
r *= a(aOffset + i * stride)
i += 1
}
r
}
override def sum(n: Int, a: Array[Int], aOffset: Int, stride: Int): Int = {
var i = 0
var r = 0
while (i < n) {
r += a(aOffset + i * stride)
i += 1
}
r
}
override def floor(a: Int): Int = a
override def sub(n: Int, a: Array[Int], offset: Int, v: Int, stride: Int): Unit = {
var i = 0
while(i < n) {
a(i * stride + offset) -= v
i += 1
}
}
override def round(a: Int): Int = a
override def vDiv(n: Int, a: Array[Int], aOffset: Int, b: Array[Int], bOffset: Int,
y: Array[Int], yOffset: Int): Unit = {
var i = 0
while(i < n) {
y(i + yOffset) = a(i + aOffset) / b(i + bOffset)
i += 1
}
}
override def vMul(n: Int, a: Array[Int], aOffset: Int, b: Array[Int], bOffset: Int,
y: Array[Int], yOffset: Int): Unit = {
var i = 0
while(i < n) {
y(i + yOffset) = a(i + aOffset) * b(i + bOffset)
i += 1
}
}
override def truncate(a: Int): Int = a
override def floorDiv(a: Int, b: Int): Int = {
var var2 = a / b
if ((a ^ b) < 0 && var2 * b != a) {
var2 -= 1
}
var2
}
}
implicit object NumericLong extends UndefinedTensorNumeric[Long]("Long") {
override def getType(): TensorDataType = LongType
override def plus(x: Long, y: Long): Long = x + y
override def minus(x: Long, y: Long): Long = x - y
override def times(x: Long, y: Long): Long = x * y
override def divide(x: Long, y: Long): Long = x / y
override def exp(x: Long): Long = java.lang.Math.exp(x).toLong
override def log(x: Long): Long = java.lang.Math.log(x).toLong
override def max(x: Long, y: Long): Long = java.lang.Math.max(x, y)
override def min(x: Long, y: Long): Long = java.lang.Math.min(x, y)
override def sqrt(x: Long): Long = Math.sqrt(x.toDouble).toLong
override def tanh(x: Long): Long = Math.tanh(x.toDouble).toLong
override def abs(x: Long): Long = Math.abs(x)
override def negative(x: Long): Long = -x
override def pow(x: Long): Long = Math.pow(x, -1).toLong
override def pow(x: Long, y: Long): Long = Math.pow(x, y).toLong
override def log1p(x: Long): Long = Math.log1p(x).toLong
override def isGreater(x: Long, y: Long): Boolean = x > y
override def isGreaterEq(x: Long, y: Long): Boolean = x >= y
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Long =
c.toLong(k)
override def toType[@specialized(Float, Double, Int) K](t: Long)
(implicit c: ConvertableTo[K]): K = c.fromLong(t)
override def axpy(n: Int, da: Long, dx: Array[Long], _dx_offset: Int,
incx: Int, dy: Array[Long],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = dx(_dx_offset + i) + dy(_dy_offset + i)
i += 1
}
}
override def nearlyEqual(a: Long, b: Long, epsilon: Double): Boolean = {
val absA = math.abs(a)
val absB = math.abs(b)
val diff = math.abs(a - b)
val result = if (a == b) {
true
} else if (a == 0 || b == 0 || diff < java.lang.Float.MIN_NORMAL) {
diff < (epsilon * java.lang.Float.MIN_NORMAL)
} else {
diff / (absA + absB) < epsilon
}
result
}
override def floor(a: Long): Long = a
}
implicit object NumericShort extends UndefinedTensorNumeric[Short]("Short") {
override def getType(): TensorDataType = ShortType
override def plus(x: Short, y: Short): Short = (x + y).toShort
override def minus(x: Short, y: Short): Short = (x - y).toShort
override def times(x: Short, y: Short): Short = (x * y).toShort
override def divide(x: Short, y: Short): Short = (x / y).toShort
override def exp(x: Short): Short = java.lang.Math.exp(x).toShort
override def log(x: Short): Short = java.lang.Math.log(x).toShort
override def max(x: Short, y: Short): Short = java.lang.Math.max(x, y).toShort
override def min(x: Short, y: Short): Short = java.lang.Math.min(x, y).toShort
override def sqrt(x: Short): Short = Math.sqrt(x.toDouble).toShort
override def tanh(x: Short): Short = Math.tanh(x.toDouble).toShort
override def abs(x: Short): Short = Math.abs(x).toShort
override def negative(x: Short): Short = (-x).toShort
override def pow(x: Short): Short = Math.pow(x, -1).toShort
override def pow(x: Short, y: Short): Short = Math.pow(x, y).toShort
override def log1p(x: Short): Short = Math.log1p(x).toShort
override def isGreater(x: Short, y: Short): Boolean = x > y
override def isGreaterEq(x: Short, y: Short): Boolean = x >= y
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Short =
c.toShort(k)
override def toType[@specialized(Float, Double, Int) K](t: Short)
(implicit c: ConvertableTo[K]): K = c.fromShort(t)
override def axpy(n: Int, da: Short, dx: Array[Short], _dx_offset: Int,
incx: Int, dy: Array[Short],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = (dx(_dx_offset + i) + dy(_dy_offset + i)).toShort
i += 1
}
}
override def nearlyEqual(a: Short, b: Short, epsilon: Double): Boolean = {
val absA = math.abs(a)
val absB = math.abs(b)
val diff = math.abs(a - b)
val result = if (a == b) {
true
} else if (a == 0 || b == 0 || diff < java.lang.Float.MIN_NORMAL) {
diff < (epsilon * java.lang.Float.MIN_NORMAL)
} else {
diff / (absA + absB) < epsilon
}
result
}
override def floor(a: Short): Short = a
}
implicit object NumericChar extends UndefinedTensorNumeric[Char]("Char") {
override def getType(): TensorDataType = CharType
override def plus(x: Char, y: Char): Char = (x + y).toChar
override def minus(x: Char, y: Char): Char = (x - y).toChar
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Char =
c.toChar(k)
override def axpy(n: Int, da: Char, dx: Array[Char], _dx_offset: Int,
incx: Int, dy: Array[Char],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = (dx(_dx_offset + i) + dy(_dy_offset + i)).toChar
i += 1
}
}
override def nearlyEqual(a: Char, b: Char, epsilon: Double): Boolean = {
a == b
}
}
implicit object NumericByte extends UndefinedTensorNumeric[Byte]("Byte") {
override def getType(): TensorDataType = ByteType
override def plus(x: Byte, y: Byte): Byte = (x + y).toByte
override def minus(x: Byte, y: Byte): Byte = (x - y).toByte
override def fromType[K](k: K)(
implicit c: ConvertableFrom[K]): Byte =
c.toByte(k)
override def axpy(n: Int, da: Byte, dx: Array[Byte], _dx_offset: Int,
incx: Int, dy: Array[Byte],
_dy_offset: Int, incy: Int): Unit = {
var i = 0
while (i < n) {
dy(i + _dy_offset) = (dx(_dx_offset + i) + dy(_dy_offset + i)).toByte
i += 1
}
}
override def nearlyEqual(a: Byte, b: Byte, epsilon: Double): Boolean = {
a == b
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy