com.intel.analytics.bigdl.utils.caffe.CaffeLoader.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils.caffe
import java.io._
import caffe.Caffe
import caffe.Caffe._
import com.google.protobuf.TextFormat.ParseException
import com.google.protobuf.{CodedInputStream, GeneratedMessage, TextFormat}
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.Graph.ModuleNode
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{FileReader, Table}
import org.apache.log4j.Logger
import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
abstract class Customizable[T: ClassTag](implicit ev: TensorNumeric[T]) {
var contexts: Map[String, Any] = _
def convertor(layer: GeneratedMessage): Seq[ModuleNode[T]]
def registerContext(name: String, context: Any): Unit = {
if (contexts == null) {
contexts = Map[String, Any]()
}
contexts += (name -> context)
}
}
/**
* An utility to load pre-trained caffe model from prototxt and binary
* and convert it to BigDL equivalent modules
* @param prototxtPath caffe model define prototxt path
* @param modelPath caffe serialized binary model path
* @param matchAll if match all modules with parameters
* @param customizedConverters customized converter
* @tparam T type
*/
class CaffeLoader[T: ClassTag](prototxtPath: String, modelPath: String,
matchAll: Boolean = true,
customizedConverters: mutable.HashMap[String, Customizable[T]] = null
)(implicit ev: TensorNumeric[T]) {
private val logger = Logger.getLogger(getClass)
private var netparam: Caffe.NetParameter = _
private var name2LayerV1: Map[String, V1LayerParameter] = Map[String, V1LayerParameter]()
private var name2LayerV2: Map[String, LayerParameter] = Map[String, LayerParameter]()
private val layerConverter = new LayerConverter[T]()
private val v1layerConverter = new V1LayerConverter[T]()
private val criterions = ParallelCriterion[T]()
private def registerCustomizedConverter(): Unit = {
if (customizedConverters != null) {
customizedConverters.foreach(entry => {
layerConverter.registerCutomizedConverter(entry._1, entry._2.convertor)
v1layerConverter.registerCutomizedConverter(entry._1, entry._2.convertor)
entry._2.registerContext("name2LayerV1", name2LayerV1)
entry._2.registerContext("name2LayerV2", name2LayerV2)
entry._2.registerContext("netparam", netparam)
})
}
}
private def loadCaffe(prototxtPath: String, modelPath: String): Unit = {
if (null == netparam) {
netparam = loadBinary(prototxtPath, modelPath)
import scala.collection.JavaConverters._
// V1LayerParameter
netparam.getLayersList.asScala.foreach(layer => name2LayerV1 += (layer.getName -> layer))
// V2LayerParameter
netparam.getLayerList.asScala.foreach(layer => name2LayerV2 += (layer.getName -> layer))
}
}
private def loadBinary(prototxtPath: String, modelPath: String): Caffe.NetParameter = {
var modelFr: FileReader = null
var prototxtFr: FileReader = null
var modelStream: InputStream = null
var prototxtStream: InputStream = null
var prototxtReader: InputStreamReader = null
try {
modelFr = FileReader(modelPath)
prototxtFr = FileReader(prototxtPath)
modelStream = modelFr.open()
prototxtStream = prototxtFr.open()
prototxtReader = new InputStreamReader(prototxtStream, "ASCII")
val netBuilder = NetParameter.newBuilder
TextFormat.merge(prototxtReader, netBuilder)
logger.info(s"start loading caffe model from $modelPath")
val cis = CodedInputStream.newInstance(modelStream)
cis.setSizeLimit(Integer.MAX_VALUE)
val weightBuilder = NetParameter.newBuilder
weightBuilder.mergeFrom(cis)
logger.info("load caffe model done")
mergeNetWithParams(netBuilder.build, weightBuilder.build)
} finally {
if (null != prototxtReader) prototxtReader.close()
if (null != modelStream) modelStream.close()
if (null != prototxtStream) prototxtStream.close()
if (modelFr != null) modelFr.close()
if (prototxtFr != null) prototxtFr.close()
}
}
private def mergeNetWithParams(net : NetParameter, weights : NetParameter): NetParameter = {
val builder = NetParameter.newBuilder(net)
val layers = new mutable.HashMap[String, GeneratedMessage]
val v1Layers = new ArrayBuffer[V1LayerParameter]
val v2Layers = new ArrayBuffer[LayerParameter]
net.getLayersList.asScala.foreach(v1Layer => v1Layers.append(v1Layer))
net.getLayerList.asScala.foreach(v2Layer => v2Layers.append(v2Layer))
weights.getLayersList.asScala.foreach(v1Layer => layers(v1Layer.getName) = v1Layer)
weights.getLayerList.asScala.foreach(v2Layer => layers(v2Layer.getName) = v2Layer)
builder.clearLayers
builder.clearLayer
v1Layers.foreach(v1Layer => {
val name = v1Layer.getName
if (layers.contains(name)) {
val weightLayer = layers(name)
builder.addLayers(copyBlobs(weightLayer, v1Layer).asInstanceOf[V1LayerParameter])
} else {
builder.addLayers(v1Layer)
if (customizedConverters ==null ||
!customizedConverters.contains(v1Layer.getType.toString.toUpperCase)) {
logger.warn(s"layer $name if type ${v1Layer.getType.toString}" +
s"does not exist in weight file")
}
}
})
v2Layers.foreach(v2Layer => {
val name = v2Layer.getName
if (layers.contains(name)) {
val weightLayer = layers(name)
builder.addLayer(copyBlobs(weightLayer, v2Layer).asInstanceOf[LayerParameter])
} else {
builder.addLayer(v2Layer)
if (customizedConverters ==null ||
!customizedConverters.contains(v2Layer.getType.toUpperCase)) {
logger.warn(s"layer $name if type ${v2Layer.getType} does not exist in weight file")
}
}
})
builder.build
}
private def copyBlobs(from : GeneratedMessage, to : GeneratedMessage): GeneratedMessage = {
import scala.language.existentials
val blobList = from match {
case v1 : V1LayerParameter => v1.asInstanceOf[V1LayerParameter].getBlobsList.asScala
case v2 : LayerParameter => v2.asInstanceOf[LayerParameter].getBlobsList.asScala
}
val layer = to match {
case v1 : V1LayerParameter =>
val layerBuilder = V1LayerParameter.newBuilder(to.asInstanceOf[V1LayerParameter])
layerBuilder.clearBlobs
blobList.foreach(blob => layerBuilder.addBlobs(blob))
layerBuilder.build
case v2 : LayerParameter =>
val layerBuilder = LayerParameter.newBuilder(to.asInstanceOf[LayerParameter])
layerBuilder.clearBlobs
blobList.foreach(blob => layerBuilder.addBlobs(blob))
layerBuilder.build
}
layer.asInstanceOf[GeneratedMessage]
}
private def getBlob(name: String, ind: Int): Option[Caffe.BlobProto] = {
if (name2LayerV2.contains(name) && name2LayerV2(name).getBlobsCount > ind) {
Some(name2LayerV2(name).getBlobs(ind))
} else if (name2LayerV1.contains(name) && name2LayerV1(name).getBlobsCount > ind) {
Some(name2LayerV1(name).getBlobs(ind))
} else {
None
}
}
private def loadParameters(name: String, params: Table): Unit = {
logger.info(s"load parameters for $name ...")
// for Bias layer, there is no weight but has bias so the bias is the first blob
var index = 0
val caffeWeight = getBlob(name, index)
if (caffeWeight.isDefined && params.contains("weight")) {
index += 1
require(params.contains("weight"), s"$name should contain weight")
val caffeWeightData = caffeWeight.get.getDataList
val weight = params[Tensor[T]]("weight")
require(params != null && weight.nElement() == caffeWeightData.size(),
s"weight element number is not equal between caffe layer and bigdl module $name, " +
s"data shape in caffe is ${ caffeWeight.get.getShape() }," +
s" while data shape in bigdl is ${ weight.size().mkString(",") }")
var i = 0
val weightData = weight.storage().array()
var offset = weight.storageOffset() - 1
while (i < caffeWeightData.size()) {
weightData(offset) = ev.fromType[Float](caffeWeightData.get(i))
offset += 1
i += 1
}
}
val caffeBias = getBlob(name, index)
if (caffeBias.isDefined) {
require(params.contains("bias"), s"$name should contain bias")
val caffeBiasList = caffeBias.get.getDataList
val bias = params[Tensor[T]]("bias")
require(bias.nElement() == caffeBiasList.size(),
s"bias element number is not equal between caffe layer and bigdl module $name, " +
s"data shape in caffe is ${ caffeBias.get.getShape() }," +
s" while data shape in bigdl is ${ bias.size().mkString(",") }")
var i = 0
val biasData = bias.storage().array()
var offset = bias.storageOffset() - 1
while (i < caffeBiasList.size()) {
biasData(offset) = ev.fromType[Float](caffeBiasList.get(i))
offset += 1
i += 1
}
}
}
/**
* copy caffe parameters to module
* if matchAll, throw an exception if some layers are not mapped
* @param model the model defined in big-dl
* @return
*/
private def copyParameters(model: Module[T]): Module[T] = {
loadCaffe(prototxtPath, modelPath)
val parameterTable = model.getParametersTable()
parameterTable.foreach {
case (name: String, params: Table) =>
copyParameter(name, params)
case _ =>
throw new UnsupportedOperationException("unsupported $name and $params")
}
model
}
private def copyParameter(name: String, params: Table): Unit = {
if (params == null || (!params.contains("weight") && !params.contains("bias"))) return
if (!name2LayerV2.contains(name) && !name2LayerV1.contains(name)) {
if (matchAll) throw new CaffeConversionException(s"module $name " +
s"cannot map a layer in caffe model")
logger.info(s"$name uses initialized parameters")
return
}
loadParameters(name, params)
}
/**
* Load caffe model from prototxt file and binary pre-trained model and converted
* to BigDL graph module
* @param outputNames additional output layer names besides the default(layers without next nodes)
* @return BigDL model and criterion
*/
def createCaffeModel(outputNames: Array[String] = Array[String]())
: (Module[T], ParallelCriterion[T]) = {
loadCaffe(prototxtPath, modelPath)
registerCustomizedConverter()
val layers = createLayers(outputNames)
val inputs = layers.filter(layer => layer.prevNodes.isEmpty).toArray
val outputs = layers.filter(layer => layer.nextNodes.isEmpty ||
outputNames.contains(layer.element.getName())).toArray
val module = Graph(inputs, outputs)
module.setName(netparam.getName)
copyParameters(module)
(module, criterions)
}
private val dataLayerList = Array("INPUT", "DATA", "DUMMYDATA", "ANNOTATEDDATA", "MEMORYDATA")
private def tryConvertInput(layer: GeneratedMessage, layerType: String,
layers: ArrayBuffer[ModuleNode[T]],
top2LayerMap: mutable.HashMap[String, String],
layersMap: mutable.HashMap[String, ModuleNode[T]]): Boolean = {
val inputs = if (dataLayerList.contains(layerType)) convertCaffeLayer(layer) else null
addInputList(inputs, layers, top2LayerMap, layersMap)
}
// try to get input list (without data layer)
private def tryConvertInput(netparam: Caffe.NetParameter,
layers: ArrayBuffer[ModuleNode[T]],
top2LayerMap: mutable.HashMap[String, String],
layersMap: mutable.HashMap[String, ModuleNode[T]]): Boolean = {
val inputNames = netparam.getInputList
val inputs = if (!inputNames.isEmpty) {
(0 until inputNames.size()).map(i => {
val input = Input()
input.element.setName(inputNames.get(i))
input
})
} else {
null
}
addInputList(inputs, layers, top2LayerMap, layersMap)
}
private def addInputList(inputs: Seq[ModuleNode[T]],
layers: ArrayBuffer[ModuleNode[T]],
top2LayerMap: mutable.HashMap[String, String],
layersMap: mutable.HashMap[String, ModuleNode[T]]): Boolean = {
if (null != inputs) {
inputs.foreach(input => {
top2LayerMap(input.element.getName()) = input.element.getName()
layersMap(input.element.getName()) = input
layers.append(input)
})
true
} else {
false
}
}
// create directed graph based on the module relationships
private def createLayers(outputNames: Array[String]) : ArrayBuffer[ModuleNode[T]] = {
val layers = ArrayBuffer[ModuleNode[T]]()
val layersMap = new mutable.HashMap[String, ModuleNode[T]]()
val top2LayerMap = new mutable.HashMap[String, String]()
val splitLayerMap = new mutable.HashMap[String, ModuleNode[T]]()
val allLayers = ArrayBuffer[GeneratedMessage]()
if (netparam.getLayersList.size > 0 ) {
// filter out those layers from prototxt but also occurs in binary
val localMap = new mutable.HashMap[String, Int]()
var i = 0
netparam.getLayersList.asScala.
foreach(layer => {
if (!localMap.contains(layer.getName)) {
allLayers.append(layer)
localMap(layer.getName) = i
i += 1
} else {
allLayers.update(localMap(layer.getName), layer)
}
})
} else {
// filter out those layers from prototxt but also occurs in binary
val localMap = new mutable.HashMap[String, Int]()
var i = 0
netparam.getLayerList.asScala.
foreach(layer => {
if (!localMap.contains(layer.getName)) {
allLayers.append(layer)
localMap(layer.getName) = i
i += 1
} else {
allLayers.update(localMap(layer.getName), layer)
}
})
}
tryConvertInput(netparam, layers, top2LayerMap, layersMap)
allLayers.foreach(layer => {
var name : String = null
val topList = new ArrayBuffer[String]()
val bottomList = new ArrayBuffer[String]()
layer match {
case v2 : LayerParameter =>
name = v2.getName
topList ++= v2.getTopList.asScala
bottomList ++= v2.getBottomList.asScala
case v1 : V1LayerParameter =>
name = v1.getName
topList ++= v1.getTopList.asScala
bottomList ++= v1.getBottomList.asScala
}
val layerType = getLayerType(name).get.toUpperCase
if ("SPLIT" == layerType) {
// eliminate split layer in graph module, cache dependency only
require(bottomList.size == 1, s"split dependency should only be one!")
topList.foreach(top => {
if (top2LayerMap.contains(bottomList(0))) {
splitLayerMap(top) = layersMap(top2LayerMap(bottomList(0)))
}
})
} else {
// some criterion layers are not only for loss calculation,
// we need to separate it with loss function and module
val isCriterionLayerOnly: Boolean = tryAddCriterion(layerType, name)
val isInput = if (!isCriterionLayerOnly) {
tryConvertInput(layer, layerType, layers, top2LayerMap, layersMap)
} else false
if (!isCriterionLayerOnly && !isInput) {
val nodes = convertCaffeLayer(layer)
if (nodes != null) {
var curr = nodes.head
bottomList.foreach(dependency => {
if (top2LayerMap.contains(dependency)) {
layersMap(top2LayerMap(dependency)) -> curr
}
})
while (curr.nextNodes.nonEmpty) {
layers.append(curr)
curr = curr.nextNodes.head
}
layers.append(curr)
layersMap(name) = curr
topList.foreach(output => {
top2LayerMap(output) = name
})
}
}
}
})
// process with split separately in case of out of order
allLayers.foreach(layer => {
var name : String = null
val bottomList = new ArrayBuffer[String]()
layer match {
case v2 : LayerParameter =>
name = v2.getName
bottomList ++= v2.getBottomList.asScala
case v1 : V1LayerParameter =>
name = v1.getName
bottomList ++= v1.getBottomList.asScala
}
bottomList.foreach(bottom => {
if (splitLayerMap.contains(bottom)) {
splitLayerMap(bottom) -> layersMap(name)
}
})
})
layers.filter(layer => !(layer.prevNodes.isEmpty && layer.nextNodes.isEmpty)
|| outputNames.contains(layer.element.getName))
}
private def convertCaffeLayer(layer : GeneratedMessage): Seq[ModuleNode[T]] = {
val node = if (layer.isInstanceOf[LayerParameter]) {
layerConverter.convertLayerFromCaffe(layer)
}
else {
v1layerConverter.convertLayerFromCaffe(layer)
}
node
}
/**
* Add criterion according to layer type from train protocol
* if only test/model define prototxt file provided, there won't be criterion detected
* @param layerType caffe layer type
* @param layerName caffe layer name
* @return if this layer is only criterion layer
*/
private def tryAddCriterion(layerType : String, layerName: String = null) : Boolean = {
layerType.toUpperCase match {
case "SOFTMAX_LOSS" => criterions.add(ClassNLLCriterion[T]())
false
case "SOFTMAXWITHLOSS" => criterions.add(ClassNLLCriterion[T]())
false
case "EUCLIDEANLOSS" => criterions.add(MSECriterion[T]())
true
case "HINGELOSS" => criterions.add(HingeEmbeddingCriterion[T]())
true
case "SIGMOIDCROSSENTROPYLOSS" => criterions.add(CrossEntropyCriterion[T]())
false
case "INFOGAINLOSS" => criterions.add(createInfoGainCriterion(layerName))
true
case "CONTRASTIVELOSS" => criterions.add(CosineEmbeddingCriterion[T]())
true
case _ => false
}
}
private def createInfoGainCriterion(layerName : String) : ClassNLLCriterion[T] = {
val param = getInforgainParam(layerName).get
val weightBlob = getBlob(layerName, 2)
if (weightBlob.isDefined) {
val size = weightBlob.get.getShape.getDimList.asScala.map(_.toInt).toArray
val weightData = weightBlob.get.getDataList
val weightArr = new Array[T](weightData.size)
var i = 0
while (i < weightData.size) {
weightArr(i) = ev.fromType[Float](weightData.get(i))
i += 1
}
val weightTensor = Tensor(weightArr, size)
ClassNLLCriterion[T](weightTensor)
} else {
ClassNLLCriterion[T]()
}
}
private def getInforgainParam(name: String): Option[InfogainLossParameter] = {
if (name2LayerV2.contains(name)) {
Some(name2LayerV2(name).getInfogainLossParam)
} else if (name2LayerV1.contains(name)) {
Some(name2LayerV1(name).getInfogainLossParam)
} else {
None
}
}
private def getLayerType(name: String): Option[String] = {
if (name2LayerV2.contains(name)) {
Some(name2LayerV2(name).getType)
} else if (name2LayerV1.contains(name)) {
Some(name2LayerV1(name).getType.toString)
} else {
None
}
}
}
object CaffeLoader {
/**
* Load weight for pre-defined model
* @param model pre-defined model
* @param defPath prototxt file which defines the network
* @param modelPath weight file which contains the parameters
* @param matchAll if we need to match all layers from prototxt in weight file
* @param customizedConverters customized converters
* @param ev tensor numeric
* @tparam T data type
* @return pre-defined model populated with weights
*/
def load[T: ClassTag](model: Module[T],
defPath: String, modelPath: String, matchAll: Boolean = true,
customizedConverters : mutable.HashMap[String, Customizable[T]] = null)
(implicit ev: TensorNumeric[T]): Module[T] = {
val caffeLoader = new CaffeLoader[T](defPath, modelPath, matchAll, customizedConverters)
caffeLoader.copyParameters(model)
}
/**
* load caffe model dynamically from prototxt and binary files
* @param defPath prototxt file which illustrates the caffe model structure
* @param modelPath binary file containing the weight and bias
* @param customizedConverters customized layer converter
* @param outputNames additional output layer names besides the default(layers without next nodes)
* @tparam T data type
* @return created module (graph) and criterion
*/
def loadCaffe[T: ClassTag](defPath: String, modelPath: String,
customizedConverters : mutable.HashMap[String, Customizable[T]] = null,
outputNames: Array[String] = Array[String]())
(implicit ev: TensorNumeric[T]): (Module[T], ParallelCriterion[T]) = {
try {
val caffeLoader = new CaffeLoader[T](defPath, modelPath, true, customizedConverters)
caffeLoader.createCaffeModel(outputNames)
} catch {
case parseException : ParseException =>
throw new CaffeConversionException("Parsing caffe model error," +
"only standard Caffe format is supported"
, parseException)
case conversionExcepion : CaffeConversionException =>
throw conversionExcepion
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy