com.intel.analytics.bigdl.utils.intermediate.IRGraph.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils.intermediate
import com.intel.analytics.bigdl.mkl.Memory
import com.intel.analytics.bigdl.nn.{Graph, SpatialMaxPooling, keras}
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, DataFormat}
import com.intel.analytics.bigdl.nn.mkldnn._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils._
import scala.reflect.ClassTag
/**
* Generate IR graph
* @param inputs input nodes for graph
* @param outputs output nodes for graph
* @param variables
* @param generateBackward
* @param inputFormats input memory layout for graph
* @param outputFormats output memory layout for graph
* @param ev$1
* @param ev
* @tparam T The numeric type in this module parameters.
*/
private[bigdl] class IRGraph[T: ClassTag](
val inputs : Seq[Node[IRElement[T]]],
val outputs : Seq[Node[IRElement[T]]],
val variables: Option[(Array[Tensor[T]], Array[Tensor[T]])] = None,
val generateBackward: Boolean = true,
val inputFormats: Seq[Int] = Seq(Memory.Format.nchw),
val outputFormats: Seq[Int] = Seq(Memory.Format.nc))
(implicit ev: TensorNumeric[T]) extends AbstractModule[Activity, Activity, T] with Serializable {
@transient private var initPrim: Boolean = false
require(inputFormats.length == inputs.length, s"IRGraph: inputFormats" +
s"length ${inputFormats.length} should be same with input nodes length ${inputs.length}")
require(outputFormats.length == outputs.length, s"IRGraph: outputFormats" +
s"length ${outputFormats.length} should be same with output nodes length ${outputs.length}")
private[bigdl] var graph: Graph[T] = null
private[bigdl] def isBuild(): Boolean = graph != null
override def updateOutput(input: Activity): Activity = {
if (graph == null) {
throw new UnsupportedOperationException("forward not supported, Please build graph first")
}
if (graph.isInstanceOf[DnnGraph]) {
// if using multi MKL-DNN model, we just use current thread directly
// because it's in sequential mode of MKL and MKL-DNN
if (Engine.isMultiModels) {
initPrimitives(input)
graph.updateOutput(input)
} else {
Engine.dnnComputing.invokeAndWait2(Array(0).map(_ => () => {
initPrimitives(input)
graph.updateOutput(input)
}))
}
} else graph.updateOutput(input)
output = graph.output
output
}
override def updateGradInput(input: Activity, gradOutput: Activity): Activity = {
if (graph == null) {
throw new UnsupportedOperationException("backward not supported, Please build graph first")
}
if (graph.isInstanceOf[DnnGraph]) {
Engine.dnnComputing.invokeAndWait2(Array(0).map(_ => () => {
graph.updateGradInput(input, gradOutput)
}))
} else graph.updateGradInput(input, gradOutput)
gradInput = graph.gradInput
gradInput
}
override def accGradParameters(input: Activity, gradOutput: Activity): Unit = {
if (graph == null) {
throw new UnsupportedOperationException("backward not supported, Please build graph first")
}
if (graph.isInstanceOf[DnnGraph]) {
Engine.dnnComputing.invokeAndWait2(Array(0).map(_ => () => {
graph.accGradParameters(input, gradOutput)
}))
} else graph.accGradParameters(input, gradOutput)
}
def build(): this.type = {
graph = new IRConverter[T](this).toGraph()
this
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
graph.parameters()
}
override def getParametersTable(): Table = graph.getParametersTable()
override def training(): this.type = {
train = true
graph.training()
this
}
/**
* Set the module to evaluate mode
* @return
*/
override def evaluate(): this.type = {
train = false
graph.evaluate()
this
}
override def getExtraParameter(): Array[Tensor[T]] = {
graph.getExtraParameter()
}
override def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)] = {
graph.getTimes()
}
override def resetTimes(): Unit = {
graph.resetTimes()
}
private def initPrimitives(input: Activity): Unit = {
if (!initPrim && graph.isInstanceOf[DnnGraph]) {
val inputMemory = new Array[MemoryData](inputFormats.length)
if (input.isInstanceOf[Tensor[T]]) {
// todo: handle for 3 dimensions, expand 3 dims to 4 dims
val size = input.toTensor[T].size()
val sizeNew = if (size.length == 3 && inputFormats(0) != Memory.Format.ntc
&& inputFormats(0) != Memory.Format.tnc) {
Array(size(0), 1, size(1), size(2))
} else if (inputFormats(0) == Memory.Format.nhwc) {
// always use NCHW to create heap data
Array(size(0), size(3), size(1), size(2))
} else size
inputMemory(0) = HeapData(sizeNew, inputFormats(0))
} else {
val tensors = input.toTable
require(tensors.length() == inputFormats.length, s"table input length " +
s"${tensors.length()} should be the same with inputFormats length ${inputFormats.length}")
tensors.foreach(t => {
require(t._2.isInstanceOf[Tensor[T]],
"Only support input with tensor type, table not supported")
val t1 = t._1.asInstanceOf[Int] // starts from 1
val t2 = t._2.asInstanceOf[Tensor[T]]
if (inputFormats(t1 - 1 ) == Memory.Format.nhwc) {
val sizeNew = Array(t2.size(1), t2.size(4), t2.size(2), t2.size(3))
inputMemory(t1 - 1) = HeapData(sizeNew, inputFormats(t1 - 1))
} else {
inputMemory(t1 - 1) = HeapData(t2.size(), inputFormats(t1 - 1))
}
})
}
val dnnGraph = graph.asInstanceOf[DnnGraph]
val phase = if (dnnGraph.isTraining()) Phase.TrainingPhase else Phase.InferencePhase
dnnGraph.setRuntime(new MklDnnRuntime())
dnnGraph.initFwdPrimitives(inputMemory, phase)
if (dnnGraph.isTraining()) {
dnnGraph.initBwdPrimitives(dnnGraph.outputFormats(), phase)
dnnGraph.initGradWPrimitives(dnnGraph.outputFormats(), phase)
}
initPrim = true
}
}
def setQuantize(value: Boolean): this.type = {
require(graph != null, s"you should build the graph first")
if (graph.isInstanceOf[DnnGraph]) {
graph.asInstanceOf[DnnGraph].setQuantize(value)
}
this
}
override def release(): Unit = {
if (graph.isInstanceOf[DnnGraph]) {
Engine.dnnComputing.invokeAndWait2(Array(0).map(_ => () => {
graph.release()
}))
}
}
}
object IRGraph {
def apply[T: ClassTag](
inputs: Seq[Node[IRElement[T]]],
outputs: Seq[Node[IRElement[T]]],
variables: Option[(Array[Tensor[T]], Array[Tensor[T]])] = None,
generateBackward: Boolean = true,
inputFormats: Int = Memory.Format.nchw,
outputFormats: Int = Memory.Format.nc
)( implicit ev: TensorNumeric[T]): IRGraph[T] = {
new IRGraph[T](inputs, outputs, variables, generateBackward,
Seq(inputFormats), Seq(outputFormats))
}
def apply[T: ClassTag](
inputs: Seq[Node[IRElement[T]]],
outputs: Seq[Node[IRElement[T]]],
variables: Option[(Array[Tensor[T]], Array[Tensor[T]])],
generateBackward: Boolean,
inputFormats: Seq[Int],
outputFormats: Seq[Int]
)( implicit ev: TensorNumeric[T]): IRGraph[T] = {
new IRGraph[T](inputs, outputs, variables, generateBackward, inputFormats, outputFormats)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy