com.intel.analytics.bigdl.utils.serializer.converters.DataConverter.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils.serializer.converters
import com.google.protobuf.ByteString
import scala.collection.JavaConverters._
import scala.reflect.runtime.universe
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, DataFormat}
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.{MultiShape, SingleShape, Shape => BigDLShape}
import com.intel.analytics.bigdl.serialization.Bigdl._
import com.intel.analytics.bigdl.serialization.Bigdl.AttrValue.ArrayValue
import scala.collection.mutable
import scala.reflect.ClassTag
/**
* Trait which defines get attribute value from saved protobuf data and convert BigDL object to
* protobuf format attribute data
*/
trait DataConverter {
/**
* Get attribute value from protobuf attribute data
* @tparam T data type
* @param context deserialization context
* @param attribute protobuf generated Attribute instance
* @return BigDL compatible param value
*/
def getAttributeValue[T : ClassTag](context: DeserializeContext,
attribute: AttrValue)(
implicit ev: TensorNumeric[T]) : AnyRef
/**
* Set attribute value to protobuf format
* @tparam T data type
* @param context serialization context
* @param attributeBuilder the attribute value writable instance
* @param value the value to be written to protobuf file
* @param valueType the type of the value to help set the data type
*/
def setAttributeValue[T : ClassTag](context: SerializeContext[T],
attributeBuilder : AttrValue.Builder, value: Any,
valueType: universe.Type = null)
(implicit ev: TensorNumeric[T]) : Unit
protected def getLock: Object = ModuleSerializer._lock
}
/**
* General implementation of [[DataConverter]], it provides the conversion entry for all types
*/
object DataConverter extends DataConverter{
private val typePlaceHolder = universe.typeOf[DataConverter]
// Customized data converter map, key is the string representation of user defined class type
private val customizedConverter = new mutable.HashMap[String, DataConverter]
def registerConverter(tpe : String, converter : DataConverter) : Unit = {
require(!customizedConverter.contains(tpe), s"converter for $tpe already exists!")
customizedConverter(tpe) = converter
}
private def getRuntimeType[T : ClassTag](value : Any) (implicit ev: TensorNumeric[T])
: universe.Type = {
getLock.synchronized {
if (value.isInstanceOf[Tensor[_]]) {
ModuleSerializer.tensorType
} else if (value.isInstanceOf[AbstractModule[_, _, _]]) {
ModuleSerializer.abstractModuleType
} else if (value.isInstanceOf[Regularizer[_]]) {
ModuleSerializer.regularizerType
} else if (value.isInstanceOf[InitializationMethod]) {
universe.typeOf[InitializationMethod]
} else if (value.isInstanceOf[VariableFormat]) {
universe.typeOf[VariableFormat]
} else if (value.isInstanceOf[DataFormat]) {
universe.typeOf[DataFormat]
} else if (value.isInstanceOf[BigDLShape]) {
universe.typeOf[BigDLShape]
} else {
val cls = value.getClass
val runtimeMirror = universe.runtimeMirror(getClass.getClassLoader)
val clsSymbol = runtimeMirror.classSymbol(cls)
clsSymbol.toType
}
}
}
override def getAttributeValue[T : ClassTag](context: DeserializeContext, attribute: AttrValue)
(implicit ev: TensorNumeric[T]) : AnyRef = {
attribute.getDataType match {
case DataType.INT32 => Integer.valueOf(attribute.getInt32Value)
case DataType.INT64 => Long.box(attribute.getInt64Value)
case DataType.DOUBLE => Double.box(attribute.getDoubleValue)
case DataType.FLOAT => Float.box(attribute.getFloatValue)
case DataType.STRING => attribute.getStringValue
case DataType.BOOL => Boolean.box(attribute.getBoolValue)
case DataType.REGULARIZER => RegularizerConverter.getAttributeValue(context, attribute)
case DataType.TENSOR => TensorConverter.getAttributeValue(context, attribute)
case DataType.VARIABLE_FORMAT =>
VariableFormatConverter.getAttributeValue(context, attribute)
case DataType.INITMETHOD => InitMethodConverter.getAttributeValue(context, attribute)
case DataType.MODULE => ModuleConverter.getAttributeValue(context, attribute)
case DataType.NAME_ATTR_LIST => NameListConverter.getAttributeValue(context, attribute)
case DataType.ARRAY_VALUE => ArrayConverter.getAttributeValue(context, attribute)
case DataType.DATA_FORMAT => DataFormatConverter.getAttributeValue(context, attribute)
case DataType.CUSTOM => CustomConverterDelegator.getAttributeValue(context, attribute)
case DataType.SHAPE => ShapeConverter.getAttributeValue(context, attribute)
case _ => throw new IllegalArgumentException
(s"${attribute.getDataType} can not be recognized")
}
}
override def setAttributeValue[T : ClassTag](
context: SerializeContext[T], attributeBuilder: AttrValue.Builder,
value: Any, valueType : universe.Type = typePlaceHolder)
(implicit ev: TensorNumeric[T]): Unit = {
getLock.synchronized {
// to make it compatible with Java types
if (valueType =:= universe.typeOf[Int] ||
valueType =:= universe.typeOf[java.lang.Integer]) {
attributeBuilder.setDataType(DataType.INT32)
attributeBuilder.setInt32Value(value.asInstanceOf[Int])
} else if (valueType =:= universe.typeOf[Long] ||
valueType =:= universe.typeOf[java.lang.Long]) {
attributeBuilder.setDataType(DataType.INT64)
attributeBuilder.setInt64Value(value.asInstanceOf[Long])
} else if (valueType =:= universe.typeOf[Float] ||
valueType =:= universe.typeOf[java.lang.Float]) {
attributeBuilder.setDataType(DataType.FLOAT)
attributeBuilder.setFloatValue(value.asInstanceOf[Float])
} else if (valueType =:= universe.typeOf[Double] ||
valueType =:= universe.typeOf[java.lang.Double]) {
attributeBuilder.setDataType(DataType.DOUBLE)
attributeBuilder.setDoubleValue(value.asInstanceOf[Double])
} else if (valueType =:= universe.typeOf[String] ||
valueType =:= universe.typeOf[java.lang.String]) {
attributeBuilder.setDataType(DataType.STRING)
attributeBuilder.setStringValue(value.asInstanceOf[String])
} else if (valueType =:= universe.typeOf[Boolean] ||
valueType =:= universe.typeOf[java.lang.Boolean]) {
attributeBuilder.setDataType(DataType.BOOL)
attributeBuilder.setBoolValue(value.asInstanceOf[Boolean])
} else if (valueType =:= universe.typeOf[VariableFormat]) {
VariableFormatConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType =:= universe.typeOf[InitializationMethod]) {
InitMethodConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType.toString == ModuleSerializer.regularizerType.toString
|| valueType <:< universe.typeOf[Regularizer[_]]) {
RegularizerConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType <:< universe.typeOf[Tensor[_]]) {
TensorConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType.toString == ModuleSerializer.tType.toString) {
if (ev == com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericDouble) {
attributeBuilder.setDataType(DataType.DOUBLE)
attributeBuilder.setDoubleValue(value.asInstanceOf[Double])
} else {
attributeBuilder.setDataType(DataType.FLOAT)
attributeBuilder.setFloatValue(value.asInstanceOf[Float])
}
} else if (valueType.toString == ModuleSerializer.abstractModuleType.toString
|| valueType.toString == ModuleSerializer.tensorModuleType.toString
|| valueType.toString == ModuleSerializer.moduleType.toString
|| valueType.toString == ModuleSerializer.boundedModuleType.toString
|| valueType <:< universe.typeOf[AbstractModule[_, _, _]]
) {
ModuleConverter.setAttributeValue(context, attributeBuilder, value)
} else if (value.isInstanceOf[mutable.Map[_, _]]) {
NameListConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType <:< universe.typeOf[Array[_]] ||
valueType.typeSymbol == universe.typeOf[Array[_]].typeSymbol) {
ArrayConverter.setAttributeValue(context, attributeBuilder, value, valueType)
} else if (valueType =:= universe.typeOf[DataFormat]) {
DataFormatConverter.setAttributeValue(context, attributeBuilder, value)
} else if (valueType =:= universe.typeOf[BigDLShape]) {
ShapeConverter.setAttributeValue(context, attributeBuilder, value)
} else {
CustomConverterDelegator.setAttributeValue(context, attributeBuilder, value, valueType)
}
}
}
/**
* DataConverter for name list
*/
object NameListConverter extends DataConverter {
override def getAttributeValue[T: ClassTag]
(context: DeserializeContext, attribute: AttrValue)(implicit ev: TensorNumeric[T]): AnyRef = {
val nameListMap = new mutable.HashMap[String, mutable.Map[String, Any]]()
val listMap = new mutable.HashMap[String, Any]()
val nameAttrListValue = attribute.getNameAttrListValue
val listName = nameAttrListValue.getName
nameAttrListValue.getAttrMap.asScala.foreach(attributePair => {
val name = attributePair._1
val attrValue = attributePair._2
val convetedObj = DataConverter.getAttributeValue(context, attrValue)
listMap(name) = convetedObj
})
nameListMap(listName) = listMap
nameListMap
}
override def setAttributeValue[T: ClassTag](context: SerializeContext[T],
attributeBuilder: AttrValue.Builder,
value: Any, valueType: universe.Type = null)(implicit ev: TensorNumeric[T]): Unit = {
attributeBuilder.setDataType(DataType.NAME_ATTR_LIST)
val listMap = value.asInstanceOf[mutable.Map[String, mutable.Map[String, Any]]]
val (name, nameListMap) = listMap.head
val nameAttrList = NameAttrList.newBuilder
nameAttrList.setName(name)
nameListMap.foreach(attributePair => {
val name = attributePair._1
val obj = attributePair._2
val nextedAttr = AttrValue.newBuilder
DataConverter.setAttributeValue(context, nextedAttr, obj, getRuntimeType(obj))
nameAttrList.putAttr(name, nextedAttr.build)
})
attributeBuilder.setNameAttrListValue(nameAttrList.build)
}
}
/**
* DataConvert for array container, it's different from Array[AttrValue]
* it's an array of specific type value
* For each specific type, wrapper it as corresponding attribute and call related converter
*/
object ArrayConverter extends DataConverter {
override def getAttributeValue[T: ClassTag]
(context: DeserializeContext, attribute: AttrValue)(implicit ev: TensorNumeric[T]): AnyRef = {
val valueArray = attribute.getArrayValue
val size = valueArray.getSize
if (size == -1) {
return null
}
val listType = valueArray.getDatatype
val arr = listType match {
case DataType.INT32 =>
if (size == 0) {
return new Array[Int](0)
}
valueArray.getI32List.asScala.toArray.map(_.intValue)
case DataType.INT64 =>
if (size == 0) {
return new Array[Long](0)
}
valueArray.getI64List.asScala.toArray.map(_.longValue())
case DataType.DOUBLE =>
if (size == 0) {
return new Array[Double](0)
}
valueArray.getDblList.asScala.toArray.map(_.doubleValue())
case DataType.FLOAT =>
if (size == 0) {
return new Array[Float](0)
}
valueArray.getFltList.asScala.toArray.map(_.floatValue())
case DataType.STRING =>
if (size == 0) {
return new Array[String](0)
}
valueArray.getStrList.asScala.toArray
case DataType.BOOL =>
if (size == 0) {
return new Array[Boolean](0)
}
valueArray.getBooleanList.asScala.toArray.map(_.booleanValue())
case DataType.REGULARIZER =>
val regularizers = new Array[Regularizer[T]](size)
val regList = valueArray.getRegularizerList.asScala
var i = 0
regList.foreach(reg => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.REGULARIZER)
attrValue.setRegularizerValue(reg)
regularizers(i) = RegularizerConverter.
getAttributeValue(context, attrValue.build).asInstanceOf[Regularizer[T]]
i += 1
})
regularizers
case DataType.TENSOR =>
val tensors = new Array[Tensor[T]](size)
val tensorList = valueArray.getTensorList.asScala
var i = 0
tensorList.foreach(tensor => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.TENSOR)
attrValue.setTensorValue(tensor)
tensors(i) = TensorConverter.
getAttributeValue(context, attrValue.build).asInstanceOf[Tensor[T]]
i += 1
})
tensors
case DataType.VARIABLE_FORMAT =>
val formats = new Array[VariableFormat](size)
val formatList = valueArray.getVariableFormatList.asScala
var i = 0
formatList.foreach(format => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.VARIABLE_FORMAT)
attrValue.setVariableFormatValue(format)
formats(i) = VariableFormatConverter.
getAttributeValue(context, attrValue.build).asInstanceOf[VariableFormat]
})
formats
case DataType.INITMETHOD =>
val methods = new Array[InitializationMethod](size)
val methodList = valueArray.getInitMethodList.asScala
var i = 0
methodList.foreach(method => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.INITMETHOD)
attrValue.setInitMethodValue(method)
methods(i) = InitMethodConverter.getAttributeValue(context, attrValue.build)
.asInstanceOf[InitializationMethod]
i += 1
})
methods
case DataType.MODULE =>
val modules = new Array[AbstractModule[Activity, Activity, T]](size)
val moduleList = valueArray.getBigDLModuleList.asScala
var i = 0
moduleList.foreach(module => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.MODULE)
attrValue.setBigDLModuleValue(module)
modules(i) = ModuleConverter.getAttributeValue(context, attrValue.build)
.asInstanceOf[AbstractModule[Activity, Activity, T]]
i += 1
})
modules
case DataType.NAME_ATTR_LIST =>
val nameArray = new Array[Map[String, Map[String, Any]]](size)
val nameAttriLists = valueArray.getNameAttrListList.asScala
var i = 0
nameAttriLists.foreach(nameList => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.NAME_ATTR_LIST)
attrValue.setNameAttrListValue(nameList)
nameArray(i) = NameListConverter.getAttributeValue(context, attrValue.build)
.asInstanceOf[Map[String, Map[String, Any]]]
i += 1
})
nameArray
case DataType.DATA_FORMAT =>
val dataFormats = new Array[DataFormat](size)
val dataFormatList = valueArray.getDataFormatList.asScala
var i = 0
dataFormatList.foreach(format => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.DATA_FORMAT)
attrValue.setDataFormatValue(format)
dataFormats(i) = DataFormatConverter.
getAttributeValue(context, attrValue.build).asInstanceOf[DataFormat]
i += 1
})
dataFormats
case DataType.CUSTOM =>
val customValues = new Array[Any](size)
val customValueList = valueArray.getCustomList.asScala
var i = 0
customValueList.foreach(custom => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.CUSTOM)
attrValue.setCustomValue(custom)
customValues(i) = CustomConverterDelegator.
getAttributeValue(context, attrValue.build)
i += 1
})
customValues
case DataType.SHAPE =>
valueArray.getShapeList.asScala.map(shape => {
val attrValue = AttrValue.newBuilder
attrValue.setDataType(DataType.SHAPE)
attrValue.setShape(shape)
ShapeConverter.getAttributeValue(context, attrValue.build).asInstanceOf[BigDLShape]
}).toArray
case _ => throw new UnsupportedOperationException("Unsupported data type: " + listType)
}
arr
}
override def setAttributeValue[T: ClassTag](context: SerializeContext[T],
attributeBuilder: AttrValue.Builder,
value: Any, valueType: universe.Type = null)(implicit ev: TensorNumeric[T]): Unit = {
attributeBuilder.setDataType(DataType.ARRAY_VALUE)
getLock.synchronized {
val arrayBuilder = ArrayValue.newBuilder
arrayBuilder.setSize(-1)
if (valueType =:= universe.typeOf[Array[Int]]) {
arrayBuilder.setDatatype(DataType.INT32)
if (value != null) {
val int32s = value.asInstanceOf[Array[Int]]
int32s.foreach(i32 => arrayBuilder.addI32(i32))
arrayBuilder.setSize(int32s.size)
}
} else if (valueType =:= universe.typeOf[Array[Long]]) {
arrayBuilder.setDatatype(DataType.INT64)
if (value != null) {
val int64s = value.asInstanceOf[Array[Long]]
int64s.foreach(i64 => arrayBuilder.addI64(i64))
arrayBuilder.setSize(int64s.size)
}
} else if (valueType =:= universe.typeOf[Array[Float]]) {
arrayBuilder.setDatatype(DataType.FLOAT)
if (value != null) {
val flts = value.asInstanceOf[Array[Float]]
flts.foreach(flt => arrayBuilder.addFlt(flt))
arrayBuilder.setSize(flts.size)
}
} else if (valueType =:= universe.typeOf[Array[Double]]) {
arrayBuilder.setDatatype(DataType.DOUBLE)
if (value != null) {
val dbs = value.asInstanceOf[Array[Double]]
dbs.foreach(dbl => arrayBuilder.addDbl(dbl))
arrayBuilder.setSize(dbs.size)
}
} else if (valueType =:= universe.typeOf[Array[Boolean]]) {
arrayBuilder.setDatatype(DataType.BOOL)
if (value != null) {
val bls = value.asInstanceOf[Array[Boolean]]
bls.foreach(bl => arrayBuilder.addBoolean(bl))
arrayBuilder.setSize(bls.size)
}
} else if (valueType =:= universe.typeOf[Array[String]]) {
arrayBuilder.setDatatype(DataType.STRING)
if (value != null) {
val strs = value.asInstanceOf[Array[String]]
strs.foreach(str => arrayBuilder.addStr(str))
arrayBuilder.setSize(strs.size)
}
} else if (valueType <:< universe.typeOf[Array[_ <: Regularizer[_ <: Any]]]) {
arrayBuilder.setDatatype(DataType.REGULARIZER)
if (value != null) {
val regularizers = value.asInstanceOf[Array[Regularizer[T]]]
regularizers.foreach(reg => {
val attrValueBuilder = AttrValue.newBuilder
RegularizerConverter.setAttributeValue(context, attrValueBuilder, reg)
arrayBuilder.addRegularizer(attrValueBuilder.getRegularizerValue)
})
arrayBuilder.setSize(regularizers.size)
}
} else if (valueType <:< universe.
typeOf[Array[_ <: Tensor[_ <: Any]]]) {
arrayBuilder.setDatatype(DataType.TENSOR)
if (value != null) {
val tensors = value.asInstanceOf[Array[Tensor[T]]]
tensors.foreach(tensor => {
val attrValueBuilder = AttrValue.newBuilder
TensorConverter.setAttributeValue(context, attrValueBuilder, tensor)
arrayBuilder.addTensor(attrValueBuilder.getTensorValue)
})
arrayBuilder.setSize(tensors.size)
}
} else if (valueType =:= universe.typeOf[Array[VariableFormat]]) {
arrayBuilder.setDatatype(DataType.VARIABLE_FORMAT)
if (value != null) {
val formats = value.asInstanceOf[Array[VariableFormat]]
formats.foreach(format => {
val attrValueBuilder = AttrValue.newBuilder
VariableFormatConverter.setAttributeValue(context, attrValueBuilder, format)
arrayBuilder.addVariableFormat(attrValueBuilder.getVariableFormatValue)
})
arrayBuilder.setSize(formats.size)
}
} else if (valueType =:= universe.typeOf[Array[InitializationMethod]]) {
arrayBuilder.setDatatype(DataType.INITMETHOD)
if (value != null) {
val methods = value.asInstanceOf[Array[InitializationMethod]]
methods.foreach(method => {
val attrValueBuilder = AttrValue.newBuilder
InitMethodConverter.setAttributeValue(context, attrValueBuilder, method)
arrayBuilder.addInitMethod(attrValueBuilder.getInitMethodValue)
})
arrayBuilder.setSize(methods.size)
}
} else if (valueType <:< universe.
typeOf[Array[_ <: AbstractModule[_ <: Activity, _ <: Activity, _ <: Any]]]) {
arrayBuilder.setDatatype(DataType.MODULE)
if (value != null) {
val modules = value.asInstanceOf[Array[_ <: AbstractModule[Activity, Activity, T]]]
modules.foreach(module => {
val attrValueBuilder = AttrValue.newBuilder
ModuleConverter.setAttributeValue(context, attrValueBuilder, module)
arrayBuilder.addBigDLModule(attrValueBuilder.getBigDLModuleValue)
})
arrayBuilder.setSize(modules.size)
}
} else if (value.isInstanceOf[Array[Map[_, _]]]) {
arrayBuilder.setDatatype(DataType.NAME_ATTR_LIST)
value.asInstanceOf[Array[Map[String, Any]]].foreach(map => {
val attrValueBuilder = AttrValue.newBuilder
NameListConverter.setAttributeValue(context, attrValueBuilder, map)
arrayBuilder.addNameAttrList(attrValueBuilder.getNameAttrListValue)
})
} else if (valueType =:= universe.typeOf[Array[DataFormat]]) {
arrayBuilder.setDatatype(DataType.DATA_FORMAT)
if (value != null) {
val formats = value.asInstanceOf[Array[DataFormat]]
formats.foreach(format => {
val attrValueBuilder = AttrValue.newBuilder
DataFormatConverter.setAttributeValue(context, attrValueBuilder, format)
arrayBuilder.addDataFormat(attrValueBuilder.getDataFormatValue)
})
arrayBuilder.setSize(formats.size)
}
} else if (valueType =:= universe.typeOf[Array[BigDLShape]]) {
arrayBuilder.setDatatype(DataType.SHAPE)
if (value != null) {
val shapes = value.asInstanceOf[Array[BigDLShape]]
shapes.foreach(shape => {
val attrValueBuilder = AttrValue.newBuilder
ShapeConverter.setAttributeValue(context, attrValueBuilder, shape)
arrayBuilder.addShape(attrValueBuilder.getShape)
})
arrayBuilder.setSize(shapes.size)
}
} else {
arrayBuilder.setDatatype(DataType.CUSTOM)
if (value != null) {
val customValues = value.asInstanceOf[Array[Any]]
customValues.foreach(custom => {
val attrValueBuilder = AttrValue.newBuilder
CustomConverterDelegator.setAttributeValue(context, attrValueBuilder, custom)
arrayBuilder.addCustom(attrValueBuilder.getCustomValue)
})
arrayBuilder.setSize(customValues.size)
}
}
attributeBuilder.setArrayValue(arrayBuilder.build)
}
}
}
/**
* DataConvert for custom value
*/
object CustomConverterDelegator extends DataConverter {
override def getAttributeValue[T: ClassTag](context: DeserializeContext, attribute: AttrValue)
(implicit ev: TensorNumeric[T]): AnyRef = {
val subType = attribute.getSubType
require(customizedConverter.contains(subType), s"unrecognized type $subType")
val customConverter = customizedConverter.get(subType).get
customConverter.getAttributeValue(context, attribute)
}
override def setAttributeValue[T: ClassTag](context: SerializeContext[T],
attributeBuilder: AttrValue.Builder,
value: Any, valueType: universe.Type)(implicit ev: TensorNumeric[T]): Unit = {
require(customizedConverter.contains(valueType.toString), s"unrecognized type $valueType")
val customConverter = customizedConverter.get(valueType.toString).get
attributeBuilder.setDataType(DataType.CUSTOM)
attributeBuilder.setSubType(valueType.toString)
customConverter.setAttributeValue(context, attributeBuilder, value, valueType)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy