com.intel.analytics.bigdl.utils.tf.loaders.TopKV2.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.utils.tf.loaders
import java.nio.ByteOrder
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.nn.ops.{TopK => TopKOps}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.tf.Context
import org.tensorflow.framework.{DataType, NodeDef}
import scala.reflect.ClassTag
class TopKV2 extends TensorflowOpsLoader {
import Utils._
override def build[T: ClassTag](nodeDef: NodeDef, byteOrder: ByteOrder, context: Context[T])
(implicit ev: TensorNumeric[T]): Module[T] = {
val s = if (nodeDef.getAttrMap.containsKey("sorted")) {
getBoolean(nodeDef.getAttrMap, "sorted")
} else {
true
}
val t = getType(nodeDef.getAttrMap, "T")
val ts = if (t == DataType.DT_FLOAT) {
"Float"
} else if (t == DataType.DT_DOUBLE) {
"Double"
} else {
throw new UnsupportedOperationException(s"Not support load Inv when type is ${t}")
}
new TopKV2LoadTF[T](s, ts)
}
}
class TopKV2LoadTF[T: ClassTag](s: Boolean, t: String)(implicit ev: TensorNumeric[T])
extends Adapter[T](Array(2)) {
override def build(tensorArrays: Array[Tensor[_]]): AbstractModule[Activity, Activity, T] = {
val kTensor = tensorArrays(0).asInstanceOf[Tensor[Int]]
require(kTensor.isScalar, "Invalid input k")
val k = kTensor.value()
if (t == "Float") {
TopKOps[T, Float](k, s, startIndex = 0)
} else if (t == "Double") {
TopKOps[T, Double](k, s, startIndex = 0)
} else {
throw new UnsupportedOperationException(s"Not support load Inv when type is ${t}")
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy