com.intel.analytics.bigdl.visualization.Summary.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.visualization
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.visualization.tensorboard.{FileWriter}
import org.tensorflow
import scala.reflect.ClassTag
/**
* Logger for tensorboard.
* Support scalar and histogram now.
* @param logDir
* @param appName
*/
abstract class Summary(
logDir: String,
appName: String) {
protected val writer: FileWriter
/**
* Add a scalar summary.
* @param tag tag name.
* @param value tag value.
* @param step current step.
* @return this
*/
def addScalar(
tag: String,
value: Float,
step: Long): this.type = {
writer.addSummary(
Summary.scalar(tag, value), step
)
this
}
/**
* Add a histogram summary.
* @param tag tag name.
* @param value a tensor.
* @param step current step.
* @return this
*/
def addHistogram[T: ClassTag](
tag: String,
value: Tensor[T],
step: Long)(implicit ev: TensorNumeric[T]): this.type = {
writer.addSummary(
Summary.histogram[T](tag, value), step
)
this
}
/**
* Read scalar values to an array of triple by tag name.
* First element of the triple is step, second is value, third is wallclocktime.
* @param tag tag name.
* @return an array of triple.
*/
def readScalar(tag: String): Array[(Long, Float, Double)]
/**
* Close this logger.
*/
def close(): Unit = {
writer.close()
}
}
object Summary {
/**
* Create a scalar summary.
* @param tag tag name
* @param scalar scalar value
* @return
*/
def scalar(tag: String, scalar : Float): tensorflow.framework.Summary = {
val v = tensorflow.framework.Summary.Value.newBuilder().setTag(tag).setSimpleValue(scalar)
tensorflow.framework.Summary.newBuilder().addValue(v).build()
}
private val limits = makeHistogramBuckets()
/**
* Create a histogram summary.
* @param tag tag name.
* @param values values.
* @return
*/
def histogram[T: ClassTag](
tag: String,
values: Tensor[T])(implicit ev: TensorNumeric[T]): tensorflow.framework.Summary = {
val counts = new Array[Int](limits.length)
var squares = 0.0
values.apply1{value =>
val v = ev.toType[Double](value)
squares += v * v
val index = bisectLeft(limits, v)
counts(index) += 1
value
}
val histogram = tensorflow.framework.HistogramProto.newBuilder()
.setMin(ev.toType[Double](values.min()))
.setMax(ev.toType[Double](values.max()))
.setNum(values.nElement())
.setSum(ev.toType[Double](values.sum()))
.setSumSquares(squares)
var i = 0
while (i < counts.length) {
if (counts(i) != 0) {
histogram.addBucket(counts(i))
histogram.addBucketLimit(limits(i))
}
i += 1
}
val v = tensorflow.framework.Summary.Value.newBuilder().setTag(tag).setHisto(histogram)
tensorflow.framework.Summary.newBuilder().addValue(v).build()
}
/**
* Find a bucket for x.
*/
private def bisectLeft(
a: Array[Double],
x: Double,
lo: Int = 0,
hi: Int = -1): Int = {
require(lo >= 0)
var high = if (hi == -1) {
a.length
} else {
hi
}
var low = lo
while (low < high) {
val mid = (low + high) / 2
if (a(mid) < x) {
low = mid + 1
} else {
high = mid
}
}
low
}
/**
* Create a histogram buckets.
* @return
*/
private def makeHistogramBuckets(): Array[Double] = {
var v = 1e-12
val buckets = new Array[Double](1549)
var i = 1
buckets(774) = 0.0
while (i <= 774) {
buckets(774 + i) = v
buckets(774 - i) = -v
v *= 1.1
i += 1
}
buckets
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy