com.intel.analytics.bigdl.dllib.keras.layers.MulConstant.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dllib.keras.layers
import com.intel.analytics.bigdl.dllib.nn.abstractnn.{AbstractModule, IdentityOutputShape}
import com.intel.analytics.bigdl.dllib.nn.internal.KerasLayer
import com.intel.analytics.bigdl.dllib.tensor.Tensor
import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.dllib.utils.Shape
import com.intel.analytics.bigdl.dllib.keras.Net
import com.intel.analytics.bigdl.dllib.keras.layers.utils.KerasUtils
import scala.reflect.ClassTag
/**
* Multiply the input by a (non-learnable) scalar constant.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* Remark: This layer is from Torch and wrapped in Keras style.
*
* @param constant The scalar constant to be multiplied.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
* @param inputShape A Single Shape, does not include the batch dimension.
*/
class MulConstant[T: ClassTag](
val constant: Double,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasUtils.addBatch(inputShape))
with IdentityOutputShape with Net {
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val layer = com.intel.analytics.bigdl.dllib.nn.MulConstant(constant)
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object MulConstant {
def apply[@specialized(Float, Double) T: ClassTag](
constant: Double,
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): MulConstant[T] = {
new MulConstant[T](constant, inputShape)
}
}