com.intel.analytics.bigdl.dllib.nn.internal.AveragePooling1D.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dllib.nn.internal
import com.intel.analytics.bigdl.dllib.nn._
import com.intel.analytics.bigdl.dllib.nn.{Sequential => TSequential}
import com.intel.analytics.bigdl.dllib.nn.abstractnn.{AbstractModule, DataFormat}
import com.intel.analytics.bigdl.dllib.tensor.Tensor
import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.dllib.utils.Shape
import scala.reflect.ClassTag
/**
* Applies average pooling operation for temporal data.
* The input of this layer should be 3D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param poolLength Size of the region to which average pooling is applied. Integer. Default is 2.
* @param stride Factor by which to downscale. Positive integer, or -1. 2 will halve the input.
* If -1, it will default to poolLength. Default is -1, and in this case it will
* be equal to poolSize.
* @param borderMode Either 'valid' or 'same'. Default is 'valid'.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class AveragePooling1D[T: ClassTag](
poolLength: Int = 2,
stride: Int = -1,
borderMode: String = "valid",
inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends Pooling1D[T](poolLength, stride, borderMode, inputShape) {
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val pads = KerasUtils.getPadsFromBorderMode(borderMode)
val model = TSequential[T]()
model.add(com.intel.analytics.bigdl.dllib.nn.Reshape(Array(input(1), 1, input(2)), Some(true)))
val layer = SpatialAveragePooling(
kW = 1,
kH = poolLength,
dW = 1,
dH = strideValue,
padW = pads._2,
padH = pads._1,
countIncludePad = false,
format = DataFormat.NHWC)
model.add(layer)
model.add(Squeeze(3))
model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object AveragePooling1D {
def apply[@specialized(Float, Double) T: ClassTag](
poolLength: Int = 2,
stride: Int = -1,
borderMode: String = "valid",
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): AveragePooling1D[T] = {
new AveragePooling1D[T](poolLength, stride, borderMode, inputShape)
}
}