com.intel.analytics.bigdl.dllib.nn.internal.Cropping1D.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dllib.nn.internal
import com.intel.analytics.bigdl.dllib.nn.SpatialZeroPadding
import com.intel.analytics.bigdl.dllib.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.dllib.tensor.Tensor
import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.dllib.utils.{Log4Error, Shape}
import scala.reflect.ClassTag
/**
* Cropping layer for 1D input (e.g. temporal sequence).
* The input of this layer should be 3D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param cropping Int array of length 2. How many units should be trimmed off
* at the beginning and end of the cropping dimension. Default is (1, 1).
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class Cropping1D[T: ClassTag](
val cropping: Array[Int] = Array(1, 1),
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
Log4Error.invalidInputError(cropping.length == 2,
s"For Cropping1D, cropping values should be of length 2 but got length ${cropping.length}")
override def computeOutputShape(inputShape: Shape): Shape = {
val input = inputShape.toSingle().toArray
Log4Error.invalidInputError(input.length == 3,
s"Cropping1D requires 3D input, but got input dim ${input.length}")
Shape(input(0), input(1)-cropping(0)-cropping(1), input(2))
}
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val layer = SpatialZeroPadding(0, 0, -cropping(0), -cropping(1))
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object Cropping1D {
def apply[@specialized(Float, Double) T: ClassTag](
cropping: (Int, Int) = (1, 1),
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): Cropping1D[T] = {
new Cropping1D[T](Array(cropping._1, cropping._2), inputShape)
}
}