com.intel.analytics.bigdl.ppml.examples.EncryptWithRepartition.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.ppml.examples
import com.intel.analytics.bigdl.ppml.PPMLContext
import com.intel.analytics.bigdl.ppml.kms.{EHSMKeyManagementService, KMS_CONVENTION, SimpleKeyManagementService}
import com.intel.analytics.bigdl.ppml.utils.{EncryptIOArguments, Supportive}
import org.apache.spark.{SparkConf}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.slf4j.LoggerFactory
object EncryptWithRepartition extends Supportive {
def main(args: Array[String]): Unit = {
val logger = LoggerFactory.getLogger(getClass)
// parse parameter
val arguments = EncryptIOArguments.parser.parse(args, EncryptIOArguments()) match {
case Some(arguments) =>
logger.info(s"starting with $arguments"); arguments
case None =>
EncryptIOArguments.parser.failure("miss args, please see the usage info"); null
}
val sparkConf = new SparkConf().setMaster("local[4]")
val sc = PPMLContext.initPPMLContext(sparkConf, "EncryptWithRepartition", arguments.ppmlArgs())
timing("processing") {
// load csv file to data frame with ppmlcontext.
val df = timing("1/2 load Inputs and Repartition") {
sc.read(cryptoMode = arguments.inputEncryptMode).option("header", "true")
.csv(arguments.inputPath).repartition(arguments.outputPartitionNum)
}
timing("2/2 encryptAndSaveOutputs") {
// save data frame using spark kms context
sc.write(df, cryptoMode = arguments.outputEncryptMode).mode("overwrite")
.option("header", true).csv(arguments.outputPath)
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy