com.intel.analytics.bigdl.ppml.examples.SimpleQuerySparkExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.ppml.examples
import com.intel.analytics.bigdl.ppml.PPMLContext
import com.intel.analytics.bigdl.ppml.kms.{EHSMKeyManagementService, KMS_CONVENTION, SimpleKeyManagementService}
import com.intel.analytics.bigdl.ppml.utils.{EncryptIOArguments, Supportive}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.slf4j.LoggerFactory
object SimpleQuerySparkExample extends Supportive {
def main(args: Array[String]): Unit = {
val logger = LoggerFactory.getLogger(getClass)
// parse parameter
val arguments = EncryptIOArguments.parser.parse(args, EncryptIOArguments()) match {
case Some(arguments) =>
logger.info(s"starting with $arguments"); arguments
case None =>
EncryptIOArguments.parser.failure("miss args, please see the usage info"); null
}
val sc = PPMLContext.initPPMLContext("SimpleQuery", arguments.ppmlArgs())
// read kms args from spark-defaults.conf
// val sc = PPMLContext.initPPMLContext("SimpleQuery")
timing("processing") {
// load csv file to data frame with ppmlcontext.
val df = timing("1/3 loadInputs") {
sc.read(cryptoMode = arguments.inputEncryptMode).option("header", "true")
.csv(arguments.inputPath + "/people.csv")
}
val developers = timing("2/3 doSQLOperations") {
// Select only the "name" column
df.select("name").count()
// Select everybody, but increment the age by 1
df.select(df("name"), df("age") + 1).show()
// Select Developer and records count
val developers = df.filter(df("job") === "Developer" and df("age").between(20, 40)).toDF()
developers.count()
developers
}
// Map[String, DataFrame]({
// "developers" -> developers
// })
timing("3/3 encryptAndSaveOutputs") {
// save data frame using spark kms context
sc.write(developers, cryptoMode = arguments.outputEncryptMode).mode("overwrite")
.option("header", true).csv(arguments.outputPath)
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy