com.intel.analytics.zoo.examples.nnframes.imageInference.README.md Maven / Gradle / Ivy
The newest version!
# Overview
This is a Scala example for image inference with a pre-trained caffe Inception_V1 model based
on Spark DataFrame (Dataset).
Analytics Zoo provides the DataFrame-based API for image reading, pre-processing.
The related classes followed the typical estimator/transformer pattern of Spark ML and can be used in
a standard Spark ML pipeline.
# Image Model Inference
You can run the full ModelInference example by following steps.
1. Prepare pre-trained model and definition file.
Download caffe inception v1 [weights](http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel)
and [deploy.prototxt](https://github.com/BVLC/caffe/blob/master/models/bvlc_googlenet/deploy.prototxt)
Use the path of the weights file as `$modelPath`, and the path of the prototxt as `$caffeDefPath`
when submitting spark jobs.
2. Prepare predict dataset
Put your image data for prediction in the ./predict folder. Alternatively, you may also use imagenet-2012
validation dataset to run the example, which can be found from . After
you download the file (ILSVRC2012_img_val.tar), run the follow commands to extract the data.
```bash
mkdir predict
tar -xvf ILSVRC2012_img_val.tar -C ./predict/
```
3. Run this example
Command to run the example in Spark local mode:
```
spark-submit \
--master local[physcial_core_number] \
--driver-memory 10g --executor-memory 20g \
--class com.intel.analytics.zoo.examples.nnframes.imageInference.ImageInferenceExample \
./dist/lib/analytics-zoo-VERSION-jar-with-dependencies.jar \
--modelPath ./model/bvlc_googlenet.caffemodel \
--caffeDefPath ./model/deploy.prototxt \
--batchSize 32 \
--folder ./predict
```
Command to run the example in Spark yarn mode:
```
spark-submit \
--master yarn \
--deploy-mode client \
--executor-cores 8 \
--num-executors 4 \
--driver-memory 10g \
--executor-memory 150g \
--class com.intel.analytics.zoo.examples.nnframes.imageInference.ImageInference \
./dist/lib/analytics-zoo-VERSION-jar-with-dependencies.jar \
--modelPath ./model/bvlc_googlenet.caffemodel \
--caffeDefPath ./model/deploy.prototxt \
--batchSize 32 \
--folder hdfs://xxx
```
After inference, you should see something like this in the console:
```
+-----------------------------------------------------------------+----------+
|imageName |prediction|
+-----------------------------------------------------------------+----------+
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000001.JPEG|59.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000002.JPEG|796.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000003.JPEG|231.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000005.JPEG|432.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000007.JPEG|335.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000009.JPEG|675.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000011.JPEG|110.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000012.JPEG|287.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000013.JPEG|371.0 |
|hdfs://Almaren-Node-069:9000/predict/ILSVRC2012_val_00000014.JPEG|758.0 |
+-----------------------------------------------------------------+----------+
```
To map the class to human readable text, please refer to https://github.com/Lasagne/Recipes/blob/master/examples/resnet50/imagenet_classes.txt
© 2015 - 2025 Weber Informatics LLC | Privacy Policy