com.intel.analytics.zoo.examples.nnframes.imageTransferLearning.ImageTransferLearning.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.examples.nnframes.imageTransferLearning
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.zoo.pipeline.nnframes._
import com.intel.analytics.zoo.common.NNContext
import com.intel.analytics.zoo.feature.image._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.{DataFrame, Row}
import scopt.OptionParser
object ImageTransferLearning {
def main(args: Array[String]): Unit = {
val defaultParams = Utils.LocalParams()
Logger.getLogger("org").setLevel(Level.WARN)
Utils.parser.parse(args, defaultParams).foreach { params =>
val sc = NNContext.initNNContext()
val createLabel = udf { row: Row =>
if (row.getString(0).contains("demo/cats")) 1.0 else 2.0
}
val imagesDF: DataFrame = NNImageReader.readImages(params.folder + "/*/*", sc)
.withColumn("label", createLabel(col("image")))
val Array(validationDF, trainingDF) = imagesDF.randomSplit(Array(0.1, 0.9), seed = 42L)
val transformer = RowToImageFeature() -> ImageResize(256, 256) -> ImageCenterCrop(224, 224) ->
ImageChannelNormalize(123, 117, 104) -> ImageMatToTensor() -> ImageFeatureToTensor()
val loadedModel = Module.loadCaffeModel[Float](params.caffeDefPath, params.modelPath)
val featurizer = NNModel(loadedModel, transformer)
.setBatchSize(params.batchSize)
.setFeaturesCol("image")
.setPredictionCol("embedding")
val lrModel = Sequential().add(Linear(1000, 2)).add(LogSoftMax())
val classifier = NNClassifier(lrModel, ClassNLLCriterion[Float](), Array(1000))
.setFeaturesCol("embedding")
.setLearningRate(0.003)
.setBatchSize(params.batchSize)
.setMaxEpoch(params.nEpochs)
val pipeline = new Pipeline().setStages(Array(featurizer, classifier))
val pipelineModel = pipeline.fit(trainingDF)
val predictions = pipelineModel.transform(validationDF).cache()
predictions.show(20)
val evaluation = new MulticlassClassificationEvaluator().setPredictionCol("prediction")
.setMetricName("weightedPrecision").evaluate(predictions)
println("evaluation result on validationDF: " + evaluation)
}
}
}
object Utils {
case class LocalParams(
caffeDefPath: String = " ",
modelPath: String = " ",
folder: String = " ",
batchSize: Int = 16,
nEpochs: Int = 10)
val defaultParams = LocalParams()
val parser = new OptionParser[LocalParams]("Analytics zoo image transfer learning Example") {
opt[String]("caffeDefPath")
.text(s"caffeDefPath")
.action((x, c) => c.copy(caffeDefPath = x))
opt[String]("modelPath")
.text(s"modelPath")
.action((x, c) => c.copy(modelPath = x))
opt[String]("folder")
.text(s"folder")
.action((x, c) => c.copy(folder = x))
opt[Int]('b', "batchSize")
.text(s"batchSize")
.action((x, c) => c.copy(batchSize = x.toInt))
opt[Int]('e', "nEpochs")
.text("epoch numbers")
.action((x, c) => c.copy(nEpochs = x))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy