com.intel.analytics.zoo.feature.common.Preprocessing.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.common
import com.intel.analytics.bigdl.dataset.Transformer
import com.intel.analytics.bigdl.transform.vision.image.{FeatureTransformer, ImageFeature}
import com.intel.analytics.zoo.feature.image.ImageSet
import org.apache.commons.lang3.SerializationUtils
/**
* [[Preprocessing]] defines data transform action during feature preprocessing.
* Multiple [[Preprocessing]] can be combined into a [[ChainedPreprocessing]].
* E.g., FeatureStep1[A, B] -> FeatureStep2[B, C] yield a ChainedFeatureSteps[A, C]
*
* @tparam A input data type
* @tparam B output data type
*/
trait Preprocessing[A, B] extends Transformer[A, B] {
// scalastyle:off methodName
// scalastyle:off noSpaceBeforeLeftBracket
def -> [C](other: Preprocessing[B, C]): Preprocessing[A, C] = {
new ChainedPreprocessing(this, other)
}
// scalastyle:on noSpaceBeforeLeftBracket
// scalastyle:on methodName
def clonePreprocessing(): Preprocessing[A, B] = {
SerializationUtils.clone(this)
}
def apply(imageSet: ImageSet): ImageSet = {
if (this.isInstanceOf[Preprocessing[ImageFeature, ImageFeature]]) {
imageSet.transform(this.asInstanceOf[Preprocessing[ImageFeature, ImageFeature]])
} else {
throw new IllegalArgumentException("We expect " +
"Preprocessing[ImageFeature, ImageFeature] here")
}
}
}
/**
* chains two Preprocessing together. The output type of the first
* Preprocessing should be the same with the input type of the second Preprocessing.
*
* @param first first Preprocessing
* @param last last Preprocessing
* @tparam A input type of the first Preprocessing
* @tparam B output type of the first Preprocessing, as well as the input type of the last
* Preprocessing
* @tparam C output of the last Preprocessing
*/
class ChainedPreprocessing[A, B, C](first: Preprocessing[A, B], last: Preprocessing[B, C])
extends Preprocessing[A, C] {
override def apply(prev: Iterator[A]): Iterator[C] = {
last(first(prev))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy