
com.intel.analytics.zoo.pipeline.inference.InferenceSupportive.scala Maven / Gradle / Ivy
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference
import com.intel.analytics.bigdl.dataset.Sample
import org.slf4j.LoggerFactory
import scala.collection.JavaConverters._
import com.intel.analytics.bigdl.tensor.Tensor
import java.util.{List => JList}
import java.lang.{Float => JFloat}
trait InferenceSupportive {
val logger = LoggerFactory.getLogger(getClass)
def timing[T](name: String)(f: => T): T = {
val begin = System.currentTimeMillis
val result = f
val end = System.currentTimeMillis
val cost = (end - begin)
logger.info(s"$name time elapsed [${cost / 1000} s, ${cost % 1000} ms].")
result
}
def transferInputToSample(input: JList[JFloat], inputShape: Array[Int]):
Sample[Float] = {
require(input.size() == inputShape.reduce(_ * _), "data size not fit shape")
val inputData = input.asScala.toArray.map(_.asInstanceOf[Float])
Sample(Tensor(data = inputData, shape = inputShape))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy