com.intel.analytics.zoo.feature.image.ImageSet.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image
import java.io.File
import java.nio.ByteBuffer
import com.intel.analytics.bigdl.DataSet
import com.intel.analytics.bigdl.dataset.DataSet.SeqFileFolder.readLabel
import com.intel.analytics.bigdl.dataset._
import com.intel.analytics.bigdl.transform.vision.image._
import com.intel.analytics.zoo.common.Utils
import com.intel.analytics.zoo.feature.common.Preprocessing
import org.apache.commons.io.FileUtils
import org.apache.hadoop.io.Text
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.opencv.imgcodecs.Imgcodecs
import scala.reflect.ClassTag
import scala.collection.JavaConverters._
import java.nio.file.{Files, Paths}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.T
import org.apache.hadoop.fs.Path
/**
* ImageSet wraps a set of ImageFeature
*/
abstract class ImageSet {
val labelMap: Option[Map[String, Int]]
/**
* transform ImageSet
* @param transformer FeatureTransformer
* @return transformed ImageSet
*/
def transform(transformer: Preprocessing[ImageFeature, ImageFeature]): ImageSet
// scalastyle:off methodName
// scalastyle:off noSpaceBeforeLeftBracket
def -> (transformer: Preprocessing[ImageFeature, ImageFeature]): ImageSet = {
this.transform(transformer)
}
/**
* whether this is a LocalImageSet
*/
def isLocal(): Boolean
/**
* whether this is a DistributedImageSet
*/
def isDistributed(): Boolean
/**
* return LocalImageSet
*/
def toLocal(): LocalImageSet = this.asInstanceOf[LocalImageSet]
/**
* return DistributedImageSet
*/
def toDistributed(): DistributedImageSet = this.asInstanceOf[DistributedImageSet]
/**
* Convert ImageFrame to ImageSet
*
* @return ImageSet
*/
def toImageFrame(): ImageFrame
/**
* Convert ImageSet to DataSet of Sample.
*/
def toDataSet[T: ClassTag](): DataSet[Sample[T]]
}
class LocalImageSet(var array: Array[ImageFeature],
val labelMap: Option[Map[String, Int]] = None) extends ImageSet {
override def transform(transformer: Preprocessing[ImageFeature, ImageFeature]): ImageSet = {
array = transformer.apply(array.toIterator).toArray
this
}
override def isLocal(): Boolean = true
override def isDistributed(): Boolean = false
override def toImageFrame(): ImageFrame = {
ImageFrame.array(array)
}
override def toDataSet[T: ClassTag](): DataSet[Sample[T]] = {
DataSet.array(array.map(_[Sample[T]](ImageFeature.sample)))
}
}
class DistributedImageSet(var rdd: RDD[ImageFeature],
val labelMap: Option[Map[String, Int]] = None) extends ImageSet {
override def transform(transformer: Preprocessing[ImageFeature, ImageFeature]): ImageSet = {
rdd = transformer(rdd)
this
}
override def isLocal(): Boolean = false
override def isDistributed(): Boolean = true
override def toImageFrame(): ImageFrame = {
ImageFrame.rdd(rdd)
}
override def toDataSet[T: ClassTag](): DataSet[Sample[T]] = {
DataSet.rdd(rdd.map(_[Sample[T]](ImageFeature.sample)))
}
}
object ImageSet {
/**
* create LocalImageSet
* @param data array of ImageFeature
*/
def array(data: Array[ImageFeature]): LocalImageSet = {
new LocalImageSet(data)
}
/**
* create LocalImageSet
* @param data array of ImageFeature
* @param labelMap the labelMap of this ImageSet, a mapping from class names to label
*/
def array(data: Array[ImageFeature],
labelMap: Map[String, Int]): LocalImageSet = {
new LocalImageSet(data, Option(labelMap))
}
private def transform(imageSet: ImageSet,
resizeH: Int, resizeW: Int, imageCodec: Int): ImageSet = {
if (resizeW == -1 || resizeH == -1) {
imageSet -> ImageBytesToMat(imageCodec = imageCodec)
} else {
imageSet -> BufferedImageResize(resizeH, resizeW) ->
ImageBytesToMat(imageCodec = imageCodec)
}
}
/**
* create LocalImageSet from array of bytes
* @param data nested array of bytes, expect inner array is a image
* @param resizeH height after resize, by default is -1 which will not resize the image
* @param resizeW width after resize, by default is -1 which will not resize the image
* @param imageCodec specifying the color type of a loaded image, same as in OpenCV.imread.
* By default is Imgcodecs.CV_LOAD_IMAGE_UNCHANGED
*/
def array(data: Array[Array[Byte]], resizeH: Int = -1, resizeW: Int = -1,
imageCodec: Int = Imgcodecs.CV_LOAD_IMAGE_UNCHANGED,
labelMap: Map[String, Int] = null): ImageSet = {
val images = data.map(ImageFeature(_))
val imageSet = ImageSet.array(images, labelMap)
transform(imageSet, resizeH, resizeW, imageCodec)
}
/**
* create DistributedImageSet
* @param data rdd of ImageFeature
*/
def rdd(data: RDD[ImageFeature],
labelMap: Map[String, Int] = null): DistributedImageSet = {
new DistributedImageSet(data, Option(labelMap))
}
/**
* create DistributedImageSet for a RDD of array bytes
* @param data rdd of array of bytes
* @param resizeH height after resize, by default is -1 which will not resize the image
* @param resizeW width after resize, by default is -1 which will not resize the image
* @param imageCodec specifying the color type of a loaded image, same as in OpenCV.imread.
* By default is Imgcodecs.CV_LOAD_IMAGE_UNCHANGED
*/
def rddBytes(data: RDD[Array[Byte]], resizeH: Int = -1, resizeW: Int = -1,
imageCodec: Int = Imgcodecs.CV_LOAD_IMAGE_UNCHANGED,
labelMap: Map[String, Int] = null): ImageSet = {
val images = data.map(ImageFeature(_))
val imageSet = ImageSet.rdd(images, labelMap)
transform(imageSet, resizeH, resizeW, imageCodec)
}
/**
* Read images as Image Set
* if sc is defined, Read image as DistributedImageSet from local file system or HDFS
* if sc is null, Read image as LocalImageSet from local file system
*
* @param path path to read images
* if sc is defined, path can be local or HDFS. Wildcard character are supported.
* if sc is null, path is local directory/image file/image file with wildcard character
*
* if withLabel is set to true, path should be a directory that have two levels. The
* first level is class folders, and the second is images. All images belong to a same
* class should be put into the same class folder. So each image in the path is labeled by the
* folder it belongs.
*
* @param sc SparkContext
* @param minPartitions A suggestion value of the minimal partition number
* @param resizeH height after resize, by default is -1 which will not resize the image
* @param resizeW width after resize, by default is -1 which will not resize the image
* @param imageCodec specifying the color type of a loaded image, same as in OpenCV.imread.
* By default is Imgcodecs.CV_LOAD_IMAGE_UNCHANGED
* @param withLabel whether to treat folders in the path as image classification labels and read
* the labels into ImageSet.
* @return ImageSet
*/
def read(path: String, sc: SparkContext = null, minPartitions: Int = 1,
resizeH: Int = -1, resizeW: Int = -1,
imageCodec: Int = Imgcodecs.CV_LOAD_IMAGE_UNCHANGED,
withLabel: Boolean = false, oneBasedLabel: Boolean = true): ImageSet = {
val imageSet = if (null != sc) {
readToDistributedImageSet(path, minPartitions, sc, withLabel, oneBasedLabel)
} else {
readToLocalImageSet(path, withLabel, oneBasedLabel)
}
transform(imageSet, resizeH, resizeW, imageCodec)
}
private def readToDistributedImageSet(pathStr: String,
minPartitions: Int,
sc: SparkContext,
withLabel: Boolean,
oneBasedLabel: Boolean): ImageSet = {
if (withLabel) {
val path = new Path(pathStr)
val fsSys = path.getFileSystem(sc.hadoopConfiguration)
val dirPath = fsSys.getFileStatus(path).getPath.toUri.getRawPath
val classFolders = fsSys.listStatus(path).filter(_.isDirectory)
val newPathsString = classFolders.map(_.getPath.toUri.toString).mkString(",")
val labelMap = classFolders.map(_.getPath.getName)
.sorted.zipWithIndex.map { c =>
if (oneBasedLabel) c._1 -> (c._2 + 1)
else c._1 -> c._2
}.toMap
val images = sc.binaryFiles(newPathsString, minPartitions).map { case (p, stream) =>
val rawFilePath = new Path(p).toUri.getRawPath
assert(rawFilePath.startsWith(dirPath),
s"directory path: $dirPath does not match file path $rawFilePath")
val classStr = rawFilePath
.substring(dirPath.length + 1).split(File.separator)(0)
val label = labelMap(classStr)
ImageFeature(stream.toArray(), uri = p, label = Tensor[Float](T(label)))
}
ImageSet.rdd(images, labelMap)
} else {
val images = sc.binaryFiles(pathStr, minPartitions).map { case (p, stream) =>
ImageFeature(stream.toArray(), uri = p)
}
ImageSet.rdd(images)
}
}
private def readToLocalImageSet(pathStr: String,
withLabel: Boolean,
oneBasedLabel: Boolean): ImageSet = {
val basePath = Paths.get(pathStr)
if (withLabel) {
val classFolders = Files.newDirectoryStream(basePath).asScala
.filter(_.toFile.isDirectory)
val labelMap = classFolders
.map(_.getFileName.toString)
.toArray.sortWith(_ < _).zipWithIndex.map{ c =>
if (oneBasedLabel) c._1 -> (c._2 + 1)
else c._1 -> c._2
}.toMap
val files = classFolders.flatMap { p =>
Utils.listLocalFiles(p.toAbsolutePath.toString)
}
val images = files.map { p =>
val classStr = p.getAbsolutePath
.substring(basePath.toFile.getAbsolutePath.length + 1).split(File.separator)(0)
val label = labelMap(classStr)
ImageFeature(FileUtils.readFileToByteArray(p),
uri = p.getAbsolutePath, label = Tensor[Float](T(label)))
}.toArray
ImageSet.array(images, labelMap)
} else {
val files = Utils.listLocalFiles(pathStr)
val images = files.map { p =>
ImageFeature(FileUtils.readFileToByteArray(p), uri = p.getAbsolutePath)
}
ImageSet.array(images)
}
}
/**
* Read images (with labels) from Hadoop SequenceFiles as ImageSet.
*
* @param path The folder path that contains sequence files.
* Local or distributed file system (such as HDFS) are supported.
* @param sc An instance of SparkContext.
* @param minPartitions Integer. A suggestion value of the minimal partition number for input
* texts. Default is 1.
* @param classNum Integer. The number of image categories. Default is 1000 for ImageNet.
* @return DistributedImageSet.
*/
def readSequenceFiles(path: String, sc: SparkContext,
minPartitions: Int = 1, classNum: Int = 1000): DistributedImageSet = {
val images = sc.sequenceFile(path, classOf[Text], classOf[Text], minPartitions).map(image => {
val rawBytes = image._2.copyBytes()
val label = Tensor[Float](T(readLabel(image._1).toFloat))
val imgBuffer = ByteBuffer.wrap(rawBytes)
val width = imgBuffer.getInt
val height = imgBuffer.getInt
val bytes = new Array[Byte](3 * width * height)
System.arraycopy(imgBuffer.array(), 8, bytes, 0, bytes.length)
val imf = ImageFeature(bytes, label)
imf(ImageFeature.originalSize) = (height, width, 3)
imf
}).filter(_[Tensor[Float]](ImageFeature.label).valueAt(1) <= classNum)
val imageSet = ImageSet.rdd(images)
(imageSet -> ImagePixelBytesToMat()).toDistributed()
}
/**
* Convert ImageFrame to ImageSet
*
* @param imageFrame imageFrame which needs to covert to Imageset
* @return ImageSet
*/
private[zoo] def fromImageFrame(imageFrame: ImageFrame): ImageSet = {
val imageset = imageFrame match {
case distributedImageFrame: DistributedImageFrame =>
ImageSet.rdd(imageFrame.toDistributed().rdd)
case localImageFrame: LocalImageFrame =>
ImageSet.array(imageFrame.toLocal().array)
}
imageset
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy