com.intel.analytics.zoo.feature.image.ImageSetToSample.scala Maven / Gradle / Ivy
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image
import com.intel.analytics.bigdl.dataset.ArraySample
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.transform.vision.image.ImageFeature
import org.apache.log4j.Logger
import scala.reflect.ClassTag
/**
* Transforms tensors that map inputKeys and targetKeys to sample
* @param inputKeys keys that maps inputs (each input should be a tensor)
* @param targetKeys keys that maps targets (each target should be a tensor)
* @param sampleKey key to store sample
*/
class ImageSetToSample[T: ClassTag](inputKeys: Array[String] = Array(ImageFeature.imageTensor),
targetKeys: Array[String] = Array(ImageFeature.label),
sampleKey: String = ImageFeature.sample)(implicit ev: TensorNumeric[T])
extends ImageProcessing {
import ImageSetToSample.logger
override def apply(prev: Iterator[ImageFeature]): Iterator[ImageFeature] = {
prev.map(transform(_))
}
override def transform(feature: ImageFeature): ImageFeature = {
if (!feature.isValid) return feature
try {
val inputs = inputKeys.map(key => {
val input = feature[Tensor[T]](key)
require(input.isInstanceOf[Tensor[T]], s"the input $key should be tensor")
input.asInstanceOf[Tensor[T]]
})
val sample = if (targetKeys == null) {
ArraySample[T](inputs)
} else {
// If an ImageFeature doesn't contain the specified target(s), the result Sample
// won't contain labels.
// In this case the same preprocessor for ImageModels can both handle images with labels
// (for evaluation) or without labels (for inference).
val targets = targetKeys.flatMap(key => {
if (feature.contains(key)) {
val target = feature[Tensor[T]](key)
require(target.isInstanceOf[Tensor[T]], s"the target $key should be tensor")
Some(target.asInstanceOf[Tensor[T]])
}
else {
// You are safe to ignore this warning if you are doing inference.
logger.warn(s"The ImageFeature doesn't contain targetKey $key, ignoring it")
None
}
})
if (targets.length > 0) ArraySample[T](inputs, targets)
else ArraySample[T](inputs)
}
feature(sampleKey) = sample
} catch {
case e: Exception =>
e.printStackTrace()
val uri = feature.uri()
logger.error(s"The conversion from ImageFeature to Sample fails for $uri")
feature(ImageFeature.originalSize) = (-1, -1, -1)
feature.isValid = false
}
feature
}
}
object ImageSetToSample {
val logger: Logger = Logger.getLogger(getClass)
def apply[T: ClassTag](inputKeys: Array[String] = Array(ImageFeature.imageTensor),
targetKeys: Array[String] = Array(ImageFeature.label),
sampleKey: String = ImageFeature.sample)
(implicit ev: TensorNumeric[T]): ImageSetToSample[T] =
new ImageSetToSample(inputKeys, targetKeys, sampleKey)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy