com.intel.analytics.zoo.pipeline.inference.AbstractInferenceModel Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public abstract class AbstractInferenceModel extends InferenceModel implements Serializable {
public AbstractInferenceModel() {
super();
}
public AbstractInferenceModel(int concurrentNum) {
super(concurrentNum);
}
public AbstractInferenceModel(boolean autoScalingEnabled, int concurrentNum) {
super(autoScalingEnabled, concurrentNum);
}
public void loadBigDL(String modelPath) {
doLoadBigDL(modelPath, null, true);
}
public void loadBigDL(String modelPath, String weightPath) {
doLoadBigDL(modelPath, weightPath, true);
}
@Deprecated
public void load(String modelPath) {
doLoad(modelPath, null, true);
}
@Deprecated
public void load(String modelPath, String weightPath) {
doLoad(modelPath, weightPath, true);
}
public void loadCaffe(String modelPath) {
doLoadCaffe(modelPath, null, true);
}
public void loadCaffe(String modelPath, String weightPath) {
doLoadCaffe(modelPath, weightPath, true);
}
public void loadTensorflow(String modelPath, String modelType) {
doLoadTensorflow(modelPath, modelType);
}
public void loadTensorflow(String modelPath, String modelType, int intraOpParallelismThreads, int interOpParallelismThreads, boolean usePerSessionThreads) {
doLoadTensorflow(modelPath, modelType, intraOpParallelismThreads, interOpParallelismThreads, usePerSessionThreads);
}
public void loadTensorflow(String modelPath, String modelType, String[] inputs, String[] outputs) {
doLoadTensorflow(modelPath, modelType, inputs, outputs);
}
public void loadTensorflow(String modelPath, String modelType, String[] inputs, String[] outputs, int intraOpParallelismThreads, int interOpParallelismThreads, boolean usePerSessionThreads) {
doLoadTensorflow(modelPath, modelType, inputs, outputs, intraOpParallelismThreads, interOpParallelismThreads, usePerSessionThreads);
}
public void loadTensorflow(byte[] savedModelBytes, String modelType, String[] inputs, String[] outputs) {
doLoadTensorflow(savedModelBytes, modelType, inputs, outputs);
}
public void loadTensorflow(byte[] savedModelBytes, String modelType, String[] inputs, String[] outputs, int intraOpParallelismThreads, int interOpParallelismThreads, boolean usePerSessionThreads) {
doLoadTensorflow(savedModelBytes, modelType, inputs, outputs, intraOpParallelismThreads, interOpParallelismThreads, usePerSessionThreads);
}
public void loadPyTorch(String modelPath) {
doLoadPyTorch(modelPath);
}
public void loadPyTorch(byte[] modelBytes) {
doLoadPyTorch(modelBytes);
}
public void loadOpenVINO(String modelFilePath, String weightFilePath, int batchSize) {
doLoadOpenVINO(modelFilePath, weightFilePath, batchSize);
}
public void loadOpenVINO(String modelFilePath, String weightFilePath) {
doLoadOpenVINO(modelFilePath, weightFilePath, 0);
}
public void loadEncryptedOpenVINO(String modelFilePath, String weightFilePath, String secret, String salt, int batchSize) {
doLoadEncryptedOpenVINO(modelFilePath, weightFilePath, secret, salt, batchSize);
}
public void loadEncryptedOpenVINO(String modelFilePath, String weightFilePath, String secret, String salt) {
doLoadEncryptedOpenVINO(modelFilePath, weightFilePath, secret, salt, 0);
}
public void loadOpenVINO(byte[] modelBytes, byte[] weightBytes, int batchSize) {
doLoadOpenVINO(modelBytes, weightBytes, batchSize);
}
public void loadOpenVINO(byte[] modelBytes, byte[] weightBytes) {
doLoadOpenVINO(modelBytes, weightBytes, 0);
}
public void reload(String modelPath) {
doReload(modelPath, null);
}
public void reload(String modelPath, String weightPath) {
doReload(modelPath, weightPath);
}
public void release() {
doRelease();
}
@Deprecated
public List predict(List input, int... shape) {
List inputShape = new ArrayList();
for (int s : shape) {
inputShape.add(s);
}
return doPredict(input, inputShape);
}
public List> predict(List> inputs) {
return doPredict(inputs);
}
public List> predict(List[] inputs) {
return predict(Arrays.asList(inputs));
}
@Override
public String toString() {
return super.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy