com.intel.analytics.zoo.serving.baseline.OpenVINOBaseline.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.serving.baseline
import java.util.Base64
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.T
import com.intel.analytics.zoo.pipeline.api.net.TFNet
import com.intel.analytics.zoo.pipeline.inference.{DeviceType, InferenceModelFactory, OpenVINOModel, OpenVinoInferenceSupportive}
import com.intel.analytics.zoo.serving.PreProcessing
import com.intel.analytics.zoo.serving.arrow.{ArrowDeserializer, ArrowSerializer}
import com.intel.analytics.zoo.serving.engine.{ClusterServingInference, ModelHolder, Timer}
import com.intel.analytics.zoo.serving.utils.{ClusterServingHelper, SerParams, Supportive}
import scopt.OptionParser
object OpenVINOBaseline extends Supportive {
case class Params(configPath: String = "config.yaml",
testNum: Int = 1000,
parNum: Int = 1,
inputShape: String = "3, 224, 224")
val parser = new OptionParser[Params]("Text Classification Example") {
opt[String]('c', "configPath")
.text("Config Path of Cluster Serving")
.action((x, params) => params.copy(configPath = x))
opt[Int]('n', "testNum")
.text("Number of test input")
.action((x, params) => params.copy(testNum = x))
opt[Int]('p', "parallelism")
.text("Parallelism number, align to Flink -p")
.action((x, params) => params.copy(parNum = x))
opt[String]('s', "inputShape")
.text("Input Shape, split by coma")
.action((x, params) => params.copy(inputShape = x))
}
def parseShape(shape: String): Array[Array[Int]] = {
val shapeListStr = shape.
split("""\[\[|\]\]|\],\s*\[""").filter(x => x != "")
var shapeList = new Array[Array[Int]](shapeListStr.length)
(0 until shapeListStr.length).foreach(idx => {
val arr = shapeListStr(idx).stripPrefix("[").stripSuffix("]").split(",")
val thisShape = new Array[Int](arr.length)
(0 until arr.length).foreach(i => {
thisShape(i) = arr(i).trim.toInt
})
shapeList(idx) = thisShape
})
shapeList
}
def makeTensorFromShape(shapeStr: String): Activity = {
val shapeArr = parseShape(shape = shapeStr)
if (shapeArr.length == 1) {
Tensor[Float](shapeArr(0)).rand()
}
else {
throw new Error("multiple dim not supported yet")
}
}
def getBase64StringOfTensor(activity: Activity): String = {
val byteArr = ArrowSerializer.activityBatchToByte(activity, 1)
Base64.getEncoder.encodeToString(byteArr)
}
def main(args: Array[String]): Unit = {
val param = parser.parse(args, Params()).head
val helper = new ClusterServingHelper()
helper.initArgs()
val sParam = new SerParams(helper)
val warmT = makeTensorFromShape(param.inputShape)
val clusterServingInference = new ClusterServingInference(null, sParam.modelType)
clusterServingInference.typeCheck(warmT)
clusterServingInference.dimCheck(warmT, "add", sParam.modelType)
println("Warming up finished, begin baseline test...generating Base64 string")
Thread.sleep(3000)
timing(s"Baseline for parallel pipeline ${param.parNum} " +
s"with input ${param.testNum.toString}") {
(0 until param.parNum).indices.toParArray.foreach(_ => {
val model = OpenVinoInferenceSupportive.loadOpenVinoIR(
helper.defPath, helper.weightPath, DeviceType.CPU, helper.coreNum)
val t = warmT
model.predict(t)
// val model = TFNet(helper.weightPath)
// val t = warmT.toTensor[Float].transpose(2, 4).contiguous()
// model.forward(t)
val b64string = getBase64StringOfTensor(t)
println(s"Previewing base64 string, prefix is ${b64string.substring(0, 20)}")
val timer = new Timer()
var a = Seq[(String, String)]()
val pre = new PreProcessing(true)
(0 until sParam.coreNum).foreach( i =>
a = a :+ (i.toString(), b64string)
)
(0 until param.testNum).grouped(sParam.coreNum).flatMap(i => {
val preprocessed = timer.timing(
s"Thread ${Thread.currentThread().getId} Preprocess", sParam.coreNum) {
a.map(item => {
val deserializer = new ArrowDeserializer()
val arr = deserializer.create(b64string)
val tensor = Tensor(arr(0)._1, arr(0)._2)
println(s"${System.currentTimeMillis()} " +
s"Thread ${Thread.currentThread().getId} preprocess finished")
(item._1, T(tensor))
})
}
val t = timer.timing(
s"Thread ${Thread.currentThread().getId} Batch input", sParam.coreNum) {
clusterServingInference.batchInput(
preprocessed, sParam.coreNum, false, sParam.resize)
}
clusterServingInference.dimCheck(t, "add", sParam.modelType)
val result = timer.timing(
s"Thread ${Thread.currentThread().getId} Inference", sParam.coreNum) {
model.predict(t)
// model.forward(t)
}
clusterServingInference.dimCheck(t, "remove", sParam.modelType)
clusterServingInference.dimCheck(result, "remove", sParam.modelType)
val postprocessed = timer.timing(
s"Thread ${Thread.currentThread().getId} Postprocess", sParam.coreNum) {
(0 until sParam.coreNum).map(i => {
ArrowSerializer.activityBatchToByte(result, i + 1)
})
}
Seq(postprocessed)
}).toArray
timer.print()
})
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy