com.intel.analytics.zoo.common.Optim.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.common
import com.intel.analytics.bigdl.optim.SGD
import com.intel.analytics.bigdl.optim.SGD.LearningRateSchedule
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.zoo.pipeline.api.keras.models.{InternalOptimizerUtil}
object Optim {
/**
* A fixed learning rate scheduler, always return the same learning rate
* @param lr learning rate
*/
case class Fixed(lr: Double) extends LearningRateSchedule {
override def updateHyperParameter(config: Table, state: Table): Unit = {
val nevals = state.get[Int]("evalCounter").getOrElse(0)
state("evalCounter") = nevals + 1
config("clr") = lr
}
override def updateHyperParameter[T](optimMethod: SGD[T]): Unit = {
val state = InternalOptimizerUtil.getStateFromOptiMethod[T](optimMethod)
val nevals = state.get[Int]("evalCounter").getOrElse(0)
state("evalCounter") = nevals + 1
currentRate = lr
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy