com.intel.analytics.zoo.examples.recommendation.WideAndDeepExample.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.examples.recommendation
import scopt.OptionParser
case class WNDParams(dataset: String = "ml-1m",
modelType: String = "wide_n_deep",
inputDir: String = "./data/ml-1m/",
batchSize: Int = 2048,
maxEpoch: Int = 10,
logDir: Option[String] = None,
memoryType: String = "DRAM")
object WideAndDeepExample {
def main(args: Array[String]): Unit = {
val defaultParams = WNDParams()
val parser = new OptionParser[WNDParams]("WideAndDeep Example") {
opt[String]("dataset")
.text(s"dataset name, ml-1m or census")
.required()
.action((x, c) => c.copy(dataset = x))
opt[String]("modelType")
.text(s"modelType")
.action((x, c) => c.copy(modelType = x))
opt[String]("inputDir")
.text(s"inputDir")
.action((x, c) => c.copy(inputDir = x))
opt[Int]('b', "batchSize")
.text(s"batch size, default is 40")
.action((x, c) => c.copy(batchSize = x))
opt[Int]('e', "maxEpoch")
.text(s"max epoch, default is 40")
.action((x, c) => c.copy(maxEpoch = x))
opt[String]("logDir")
.text(s"logDir")
.action((x, c) => c.copy(logDir = Some(x)))
opt[String]("memoryType")
.text("memory type, DRAM, PMEM or DISK_n")
.action((x, c) => c.copy(memoryType = x))
}
parser.parse(args, defaultParams).map {
params =>
params.dataset match {
case "ml-1m" => Ml1mWideAndDeep.run(params)
case "census" => CensusWideAndDeep.run(params)
case _ => throw new IllegalArgumentException(s"Unkown dataset name: ${params.dataset}." +
s" Excepted ml-1m or census.")
}
} getOrElse {
System.exit(1)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy