com.intel.analytics.zoo.feature.image.ImageExpand.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image
import com.intel.analytics.bigdl.transform.vision.image.ImageFeature
import com.intel.analytics.bigdl.transform.vision.image.augmentation
/**
* expand image, fill the blank part with the meanR, meanG, meanB
*
* @param meansR means in R channel
* @param meansG means in G channel
* @param meansB means in B channel
* @param minExpandRatio min expand ratio
* @param maxExpandRatio max expand ratio
*/
class ImageExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104,
minExpandRatio: Double = 1, maxExpandRatio: Double = 4.0)
extends ImageProcessing {
private val internalCrop = new augmentation.Expand(meansR, meansG, meansB,
minExpandRatio, maxExpandRatio)
override def apply(prev: Iterator[ImageFeature]): Iterator[ImageFeature] = {
internalCrop.apply(prev)
}
override def transformMat(feature: ImageFeature): Unit = {
internalCrop.transformMat(feature)
}
}
object ImageExpand {
def apply(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104,
minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): ImageExpand =
new ImageExpand(meansR, meansG, meansB, minExpandRatio, maxExpandRatio)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy