com.intel.analytics.zoo.feature.image.ImageFiller.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image
import com.intel.analytics.bigdl.transform.vision.image.ImageFeature
import com.intel.analytics.bigdl.transform.vision.image.augmentation
/**
* Fill part of image with certain pixel value
*
* @param startX start x ratio
* @param startY start y ratio
* @param endX end x ratio
* @param endY end y ratio
* @param value filling value
*/
class ImageFiller(startX: Float, startY: Float, endX: Float, endY: Float, value: Int = 255)
extends ImageProcessing {
private val internalCrop = new augmentation.Filler(startX, startY, endX, endY, value)
override def apply(prev: Iterator[ImageFeature]): Iterator[ImageFeature] = {
internalCrop.apply(prev)
}
override def transformMat(feature: ImageFeature): Unit = {
internalCrop.transformMat(feature)
}
}
object ImageFiller {
def apply(startX: Float, startY: Float, endX: Float, endY: Float, value: Int = 255): ImageFiller
= new ImageFiller(startX, startY, endX, endY, value)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy