com.intel.analytics.zoo.feature.image3d.Warp.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image3d
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType, Tensor}
import scala.reflect.ClassTag
object WarpTransformer {
def apply(flowField: Tensor[Double],
offset: Boolean = true,
clampMode: String = "clamp", padVal: Double = 0): WarpTransformer = {
new WarpTransformer(flowField, offset, clampMode, padVal)
}
}
private[zoo] class WarpTransformer(flowField: Tensor[Double],
offset: Boolean, clampMode: String, padVal: Double)
extends Serializable {
private val _clampMode = clampMode match {
case "clamp" => 1
case "padding" => 2
}
def apply[@specialized(Float, Double) T: ClassTag](src: Tensor[T], dst: Tensor[T])
(implicit ev: TensorNumeric[T]): Unit = {
val depth = dst.size(1)
val height = dst.size(2)
val width = dst.size(3)
val src_depth = src.size(1)
val src_height = src.size(2)
val src_width = src.size(3)
val offset_mode = offset match {
case true => 1
case false => 0
}
for(z <- 1 to depth; y <- 1 to height; x <- 1 to width) {
val flow_z = flowField.valueAt(1, z, y, x)
val flow_y = flowField.valueAt(2, z, y, x)
val flow_x = flowField.valueAt(3, z, y, x)
var iz = offset_mode * z + flow_z
var iy = offset_mode * y + flow_y
var ix = offset_mode * x + flow_x
// borders
var off_image = 0
if(iz < 1 || iz > src_depth ||
iy < 1 || iy > src_height ||
ix < 1 || ix > src_width) {
off_image = 1
}
if(off_image == 1 && clampMode == 2) {
dst.setValue(z, y, x, ev.fromType[Double](padVal))
} else {
iz = math.max(iz, 1);iz = math.min(iz, src_depth)
iy = math.max(iy, 1);iy = math.min(iy, src_height)
ix = math.max(ix, 1);ix = math.min(ix, src_width)
val iz_0 = math.floor(iz).toInt
val iy_0 = math.floor(iy).toInt
val ix_0 = math.floor(ix).toInt
val iz_1 = math.min(iz_0 + 1, src_depth)
val iy_1 = math.min(iy_0 + 1, src_height)
val ix_1 = math.min(ix_0 + 1, src_width)
val wz = iz - iz_0
val wy = iy - iy_0
val wx = ix - ix_0
val value =
(1 - wy) * (1 - wx) * (1 - wz) * ev.toType[Double](src.valueAt(iz_0, iy_0, ix_0)) +
(1 - wy) * (1 - wx) * wz * ev.toType[Double](src.valueAt(iz_1, iy_0, ix_0)) +
(1 - wy) * wx * (1 - wz) * ev.toType[Double](src.valueAt(iz_0, iy_0, ix_1)) +
(1 - wy) * wx * wz * ev.toType[Double](src.valueAt(iz_1, iy_0, ix_1)) +
wy * (1 - wx) * (1 - wz) * ev.toType[Double](src.valueAt(iz_0, iy_1, ix_0)) +
wy * (1 - wx) * wz * ev.toType[Double](src.valueAt(iz_1, iy_1, ix_0)) +
wy * wx * (1-wz) * ev.toType[Double](src.valueAt(iz_0, iy_1, ix_1)) +
wy * wx * wz * ev.toType[Double](src.valueAt(iz_1, iy_1, ix_1))
dst.setValue(z, y, x, ev.fromType[Double](value))
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy