com.intel.analytics.zoo.models.anomalydetection.Utils.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.anomalydetection
import com.intel.analytics.bigdl.dataset.Sample
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.{avg, col, udf}
object Utils {
def standardScaleHelper(df: DataFrame, colName: String): DataFrame = {
val mean = df.select(colName).agg(avg(col(colName))).collect()(0).getDouble(0)
val stddevUdf = udf((num: Float) => (num - mean) * (num - mean))
val stddev = Math.sqrt(df.withColumn("stddev", stddevUdf(col(colName)))
.agg(avg(col("stddev"))).collect()(0).getDouble(0))
val scaledUdf = udf((num: Float) => ((num - mean) / stddev).toFloat)
df.withColumn(colName, scaledUdf(col(colName)))
}
def standardScale(df: DataFrame, fields: Seq[String], index: Int = 0): DataFrame = {
if (index == fields.length) {
df
} else {
val colDf = standardScaleHelper(df, fields(index))
standardScale(colDf, fields, index + 1)
}
}
def trainTestSplit(unrolled: RDD[FeatureLabelIndex[Float]], testSize: Int = 1000):
(RDD[Sample[Float]], RDD[Sample[Float]]) = {
val cutPoint = unrolled.count() - testSize
val train = AnomalyDetector.toSampleRdd(unrolled.filter(x => x.index < cutPoint))
val test = AnomalyDetector.toSampleRdd(unrolled.filter(x => x.index >= cutPoint))
(train, test)
}
def trainTestSplit(unrolled: RDD[FeatureLabelIndex[Float]], testSize: Float)
: (RDD[Sample[Float]], RDD[Sample[Float]]) = {
val totalSize = unrolled.count()
val testSizeInt = (totalSize * testSize).toInt
trainTestSplit(unrolled, testSizeInt)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy