com.intel.analytics.zoo.models.caffe.V1LayerConverter.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.caffe
import scala.collection.JavaConverters._
import caffe.Caffe
import caffe.Caffe.EltwiseParameter.EltwiseOp
import caffe.Caffe.LRNParameter.NormRegion
import caffe.Caffe.V1LayerParameter.LayerType
import caffe.Caffe._
import com.intel.analytics.shaded.protobuf_v_3_5_1.GeneratedMessage
import com.intel.analytics.bigdl.nn.Graph.ModuleNode
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.caffe.CaffeConversionException
import com.intel.analytics.bigdl.utils.{Node, Table}
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
/**
* [[Converter]] implementation for caffe deprecated LayerParameter conversion
*/
class V1LayerConverter[T: ClassTag](implicit ev: TensorNumeric[T]) extends Converter[T] {
override protected def fromCaffeConvolution(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
val param = getConvolutionParam(layer).get
val weightBlob = getBlob(layer, 0)
sanityBlobCheck(layer, "weight", weightBlob)
val weight = weightBlob.get
val biasBlob = getBlob(layer, 1)
val withBias = biasBlob.isDefined
val group = if (param.getGroup == 0) 1 else param.getGroup
val channel = if (weight.getShape.getDimCount > 1) weight.getShape.getDim(1).toInt
else weight.getChannels
val nInputPlane = channel * group
val nOutPlane = param.getNumOutput
var kw = param.getKernelW
var kh = param.getKernelH
var dw = param.getStrideW
var dh = param.getStrideH
if (kw ==0 || kh == 0) {
kw = param.getKernelSize(0)
kh = kw
}
if (dw == 0 || dh == 0) {
if (param.getStrideList.size() != 0) {
dw = param.getStride(0)
dh = dw
} else {
// use default values if not found
dw = 1
dh = 1
}
}
var pw = param.getPadW
var ph = param.getPadH
if (pw == 0 || ph == 0) {
if (param.getPadList.size() != 0) {
pw = param.getPad(0)
ph = pw
}
}
val layerType = getLayerType(layer).toUpperCase
if ("DECONVOLUTION" == layerType) {
Seq(SpatialFullConvolution[T](nOutPlane, nInputPlane, kw, kh, dw, dh, pw, ph, 0, 0, group,
noBias = !withBias)
.setName(getLayerName(layer)).inputs())
} else {
Seq(SpatialConvolution[T](nInputPlane, nOutPlane, kw, kh, dw, dh, pw, ph, group,
withBias = withBias)
.setName(getLayerName(layer)).inputs())
}
}
override protected def fromCaffeInnerProduct(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
val param = getInnerProductParam(layer).get
val withBias = param.getBiasTerm
val layerName = getLayerName(layer)
val weightBlob = getBlob(layer.asInstanceOf[V1LayerParameter], 0)
sanityBlobCheck(layer, "weight", weightBlob)
val weight = weightBlob.get
val nInputPlane = if (weight.getShape.getDimCount > 1) weight.getShape.getDim(1).toInt
else weight.getWidth
val nOutputPlane = param.getNumOutput
val linear = Linear[T](nInputPlane, nOutputPlane, withBias = withBias).setName(layerName)
val node = linear.inputs()
if(nInputPlane != nOutputPlane) {
// Construct a view layer in between
val view = View[T](nInputPlane).inputs()
view -> node
Seq(view, node)
} else {
Seq(node)
}
}
// No implementation in V1
override protected def fromCaffeBatchNormalization(layer : GeneratedMessage) :
Seq[ModuleNode[T]] = {
throw new CaffeConversionException("Batch normalizaton is not supported in V1 Layer")
}
// No implementation in V1
override protected def fromCaffeELU(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
throw new CaffeConversionException("ELU is not supported in V1 Layer")
}
// No implementation in V1
override protected def fromCaffeReshape(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
throw new CaffeConversionException("Reshape is not supported in V1 Layer")
}
// No implementation in V1
override protected def fromCaffeScale(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
throw new CaffeConversionException("Scale is not supported in V1 Layer")
}
// No implementation in V1
override protected def fromCaffeBias(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
throw new CaffeConversionException("Bias is not supported in V1 Layer")
}
// No implementation in V1
override protected def fromCaffeTile(layer : GeneratedMessage) : Seq[ModuleNode[T]] = {
throw new CaffeConversionException("Tile is not supported in V1 Layer")
}
override protected def fromCaffeInput(layer: GeneratedMessage): Seq[ModuleNode[T]] = {
val tops = layer.asInstanceOf[V1LayerParameter].getTopList
(0 until tops.size()).map(i => {
val input = Input()
input.element.setName(tops.get(i))
input
})
}
override protected def toCaffeConvolution(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.CONVOLUTION)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
// get convolution param map
val layerParams = toCaffeConvolutionParam(module)
val convolutionParam = ConvolutionParameter.newBuilder()
val ngroup = layerParams("ngroup")
val nInputPlane = layerParams("nInputPlane")
val nOutputPlane = layerParams("nOutputPlane")
convolutionParam.setGroup(ngroup)
convolutionParam.setNumOutput(nOutputPlane)
convolutionParam.setKernelW(layerParams("kernelW"))
convolutionParam.setKernelH(layerParams("kernelH"))
convolutionParam.setStrideW(layerParams("strideW"))
convolutionParam.setStrideH(layerParams("strideH"))
convolutionParam.setPadW(layerParams("padW"))
convolutionParam.setPadH(layerParams("padH"))
val withBias = if (layerParams("withBias") == 1) true else false
convolutionParam.setBiasTerm(withBias)
weightBuilder.setChannels(nInputPlane / ngroup)
weightBuilder.setNum(nOutputPlane)
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter.setConvolutionParam(convolutionParam.build)
// build concolution layer
Seq(layerParameter.build())
}
override protected def toCaffeDeConvolution(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.DECONVOLUTION)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
// get deconvolution param map
val layerParams = toCaffeDeConvolutionParam(module)
val convolutionParam = ConvolutionParameter.newBuilder()
val ngroup = layerParams("ngroup")
val nInputPlane = layerParams("nInputPlane")
val nOutputPlane = layerParams("nOutputPlane")
convolutionParam.setGroup(ngroup)
convolutionParam.setNumOutput(nOutputPlane)
convolutionParam.setKernelW(layerParams("kernelW"))
convolutionParam.setKernelH(layerParams("kernelH"))
convolutionParam.setStrideW(layerParams("strideW"))
convolutionParam.setStrideH(layerParams("strideH"))
convolutionParam.setPadW(layerParams("padW"))
convolutionParam.setPadH(layerParams("padH"))
val withBias = if (layerParams("withBias") == 1) true else false
convolutionParam.setBiasTerm(withBias)
weightBuilder.setChannels(nInputPlane / ngroup)
weightBuilder.setNum(nOutputPlane)
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter.setConvolutionParam(convolutionParam.build)
// build deConcolution layer
Seq(layerParameter.build())
}
override protected def toCaffeRelu(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.RELU)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
setBlobs(layerParameter, weightBuilder, biasBuilder)
// build concolution layer
Seq(layerParameter.build())
}
override protected def toCaffeLRN(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.LRN)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
val (localSize, alpha, belta, k, lrnType) = toCaffeLRNParam(module)
val lrnParameter = LRNParameter.newBuilder()
lrnParameter.setLocalSize(localSize)
lrnParameter.setAlpha(alpha.toFloat)
lrnParameter.setBeta(belta.toFloat)
lrnParameter.setK(k.toFloat)
if (lrnType == SpatialCrossMapLRN.getClass.getSimpleName) {
lrnParameter.setNormRegion(NormRegion.ACROSS_CHANNELS)
} else if (lrnType == SpatialWithinChannelLRN.getClass.getSimpleName) {
lrnParameter.setNormRegion(NormRegion.WITHIN_CHANNEL)
}
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter.setLrnParam(lrnParameter.build)
Seq(layerParameter.build)
}
override protected def toCaffeMaxPooling(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
toCaffePooling(module, bottoms, nextSize, true)
}
override protected def toCaffeAvePooling(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
toCaffePooling(module, bottoms, nextSize, false)
}
private def toCaffePooling(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int, max : Boolean): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.POOLING)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
val poolingParameter = if (max) toCaffeMaxPoolingParam(module)
else toCaffeAvgPoolingParam(module)
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter.setPoolingParam(poolingParameter)
Seq(layerParameter.build)
}
override protected def toCaffeInnerProduct(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
layerParameter.setType(LayerType.INNER_PRODUCT)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
val (inputSize, outputSize, withBias) = toCaffeInnerProductParam(module)
weightBuilder.setWidth(inputSize)
val innerProductParameter = InnerProductParameter.newBuilder
innerProductParameter.setNumOutput(outputSize)
innerProductParameter.setBiasTerm(withBias)
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter.setInnerProductParam(innerProductParameter.build)
Seq(layerParameter.build)
}
override protected def toCaffeDropOut(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.DROPOUT)
val dropOutRatio = toCaffeDropOutParam(module)
val dropoutParameter = DropoutParameter.newBuilder
dropoutParameter.setDropoutRatio(dropOutRatio.toFloat)
layerParameter.setDropoutParam(dropoutParameter.build)
Seq(layerParameter.build)
}
override protected def toCaffeLogSoftMax(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.SOFTMAX).build)
}
override protected def toCaffeTanh(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.TANH).build)
}
override protected def toCaffeSigmoid(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.SIGMOID).build)
}
override protected def toCaffeAbs(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.ABSVAL).build)
}
override protected def toCaffeBatchNormalization(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Batch normalization is not supported in V1Layer")
}
override protected def toCaffeConcat(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.CONCAT)
val dimension = toCaffeConcatParam(module)
val concatParameter = ConcatParameter.newBuilder
concatParameter.setAxis(dimension - 1)
layerParameter.setConcatParam(concatParameter.build)
Seq(layerParameter.build)
}
override protected def toCaffeElu(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("ELU is not supported in V1Layer")
}
override protected def toCaffeFlattern(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.FLATTEN).build)
}
override protected def toCaffeLog(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("LOG is not supported in V1Layer")
}
override protected def toCaffePower(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.POWER)
layerParameter.setPowerParam(toCaffePowerParam(module))
Seq(layerParameter.build)
}
override protected def toCaffePReLu(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("PReLU is not supported in V1Layer")
}
override protected def toCaffeRecurrent(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Recurrent is not supported in V1Layer")
}
override protected def toCaffeReshape(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Reshape is not supported in V1Layer")
}
override protected def toCaffeScale(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Scale is not supported in V1Layer")
}
override protected def toCaffeBias(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Bias is not supported in V1Layer")
}
override protected def toCaffeThreshold(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.THRESHOLD)
val thresholdParameter = toCaffeThresholdParam(module)
layerParameter.setThresholdParam(thresholdParameter)
Seq(layerParameter.build)
}
override protected def toCaffeExp(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
Seq(toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).setType(LayerType.EXP).build)
}
override protected def toCaffeSlice(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.SLICE)
val sliceParameter = toCaffeSliceParam(module)
layerParameter.setSliceParam(sliceParameter)
Seq(layerParameter.build)
}
override protected def toCaffeTile(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
throw new CaffeConversionException("Tile is not supported in V1Layer")
}
override protected def toCaffeEltWiseMax(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize)
.setType(LayerType.ELTWISE)
val eltwiseParameter = EltwiseParameter.newBuilder
eltwiseParameter.setOperation(EltwiseOp.MAX)
layerParameter.setEltwiseParam(eltwiseParameter)
Seq(layerParameter.build)
}
override protected def toCaffeEltWiseAdd(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.ELTWISE)
val eltwiseParameter = EltwiseParameter.newBuilder
eltwiseParameter.setOperation(EltwiseOp.SUM)
eltwiseParameter.setCoeff(1, 1.0f)
layerParameter.setEltwiseParam(eltwiseParameter)
Seq(layerParameter.build)
}
override protected def toCaffeEltWiseSub(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val layerParameter = toCaffeWithWeightAndBiasOnly(module, bottoms, nextSize).
setType(LayerType.ELTWISE)
val eltwiseParameter = EltwiseParameter.newBuilder
eltwiseParameter.setOperation(EltwiseOp.SUM)
eltwiseParameter.setCoeff(1, -1.0f)
layerParameter.setEltwiseParam(eltwiseParameter)
Seq(layerParameter.build)
}
override protected def toCaffeSequential(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): Seq[GeneratedMessage] = {
val res = new ArrayBuffer[GeneratedMessage]()
var lastBottoms = bottoms
val modules = module.asInstanceOf[Sequential[T]].modules
modules.foreach(nested => {
val nestedLayer = nested.asInstanceOf[AbstractModule[_, _, _]].
asInstanceOf[AbstractModule[Activity, Activity, T]]
val nextedLayers = toCaffe(nestedLayer, lastBottoms, nextSize)
res.appendAll(nextedLayers)
lastBottoms.clear()
nextedLayers(nextedLayers.size - 1).
asInstanceOf[V1LayerParameter].getTopList.asScala.foreach(lastBottoms.append(_))
})
res
}
private def toCaffeWithWeightAndBiasOnly(module : AbstractModule[Activity, Activity, T],
bottoms : ArrayBuffer[String], nextSize : Int): V1LayerParameter.Builder = {
val layerParameter = V1LayerParameter.newBuilder()
val layerName = module.getName
layerParameter.setName(layerName)
// set bottom list and top list
setConnections(layerParameter, bottoms, nextSize)
// copy weight and bias
val (weightBuilder, biasBuilder) = copyParam(module)
setBlobs(layerParameter, weightBuilder, biasBuilder)
layerParameter
}
private def setConnections(layerParameter : V1LayerParameter.Builder,
bottoms : ArrayBuffer[String], nextSize : Int) : Unit = {
val layerName = layerParameter.getName
// set bottom list
var i = 0
bottoms.foreach(bottom => {
layerParameter.addBottom(bottom)
i += 1
})
// set top list
i = 0
while (i < nextSize) {
layerParameter.addTop(s"$layerName$i")
i += 1
}
}
private def setBlobs(layerParameterBuilder: V1LayerParameter.Builder,
blobs : BlobProto.Builder*) : Unit = {
blobs.foreach(blobBuilder => {
if (blobBuilder != null) {
layerParameterBuilder.addBlobs(blobBuilder.build)
}
})
}
private def copyParam(module : AbstractModule[Activity, Activity, T]) :
(BlobProto.Builder, BlobProto.Builder) = {
// weight and bias may be empty
var weightBlobBuilder : BlobProto.Builder = null
var biasBlobBuilder : BlobProto.Builder = null
val name = module.getName
if (module.getParametersTable != null) {
val params = module.getParametersTable.get(name).get.asInstanceOf[Table]
if (params.contains("weight")) {
weightBlobBuilder = BlobProto.newBuilder()
val weight = params[Tensor[T]]("weight")
val weightData = weight.storage().array()
var i = 0
while (i < weightData.length) {
weightBlobBuilder.addData(ev.toType[Float](weightData(i)))
i += 1
}
}
if (params.contains("bias")) {
biasBlobBuilder = BlobProto.newBuilder()
val bias = params[Tensor[T]]("bias")
val biasData = bias.storage().array()
var i = 0
while (i < biasData.length) {
biasBlobBuilder.addData(ev.toType[Float](biasData(i)))
i += 1
}
}
}
(weightBlobBuilder, biasBlobBuilder)
}
override protected def getLayerName(layer : GeneratedMessage) : String = {
layer.asInstanceOf[V1LayerParameter].getName
}
override protected def getLayerType(layer : GeneratedMessage) : String = {
layer.asInstanceOf[V1LayerParameter].getType.toString
}
protected def getConvolutionParam(layer : GeneratedMessage): Option[ConvolutionParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getConvolutionParam)
}
override protected def getLRNParam(layer: GeneratedMessage): Option[LRNParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getLrnParam)
}
override protected def getPoolingParam(layer : GeneratedMessage): Option[PoolingParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getPoolingParam)
}
override protected def getInnerProductParam(layer : GeneratedMessage):
Option[InnerProductParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getInnerProductParam)
}
override protected def getDropoutParam(layer : GeneratedMessage): Option[DropoutParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getDropoutParam)
}
override protected def getConcatParam(layer : GeneratedMessage): Option[ConcatParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getConcatParam)
}
override protected def getPowerParam(layer : GeneratedMessage) : Option[PowerParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getPowerParam)
}
override protected def getThresholdParam(layer : GeneratedMessage): Option[ThresholdParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getThresholdParam)
}
override protected def getSliceParam(layer : GeneratedMessage): Option[SliceParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getSliceParam)
}
override protected def getEltWiseParam(layer : GeneratedMessage): Option[EltwiseParameter] = {
Some(layer.asInstanceOf[V1LayerParameter].getEltwiseParam)
}
protected def getBlob(layer : GeneratedMessage, ind: Int): Option[Caffe.BlobProto] = {
if (layer.asInstanceOf[V1LayerParameter].getBlobsCount > ind) {
Some(layer.asInstanceOf[V1LayerParameter].getBlobs(ind))
} else {
None
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy