com.intel.analytics.zoo.models.python.PythonZooModel.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.python
import java.util.{List => JList, Map => JMap}
import com.intel.analytics.bigdl.{Criterion}
import com.intel.analytics.bigdl.dataset.PaddingParam
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.nn.keras.KerasLayer
import com.intel.analytics.bigdl.optim.{OptimMethod, ValidationMethod, ValidationResult}
import com.intel.analytics.bigdl.python.api.{EvaluatedResult, JTensor, Sample}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.transform.vision.image.ImageFeature
import com.intel.analytics.bigdl.utils.{Shape, Table}
import com.intel.analytics.zoo.common.PythonZoo
import com.intel.analytics.zoo.feature.common.Preprocessing
import com.intel.analytics.zoo.feature.image._
import com.intel.analytics.zoo.feature.text.TextSet
import com.intel.analytics.zoo.models.anomalydetection.{AnomalyDetector, FeatureLabelIndex}
import com.intel.analytics.zoo.models.common.{KerasZooModel, Ranker, ZooModel}
import com.intel.analytics.zoo.models.image.common.{ImageConfigure, ImageModel}
import com.intel.analytics.zoo.models.image.objectdetection._
import com.intel.analytics.zoo.models.image.imageclassification.{ImageClassifier, LabelReader => IMCLabelReader}
import com.intel.analytics.zoo.models.recommendation.{NeuralCF, Recommender, UserItemFeature, UserItemPrediction}
import com.intel.analytics.zoo.models.recommendation._
import com.intel.analytics.zoo.models.seq2seq.{RNNDecoder, RNNEncoder, Seq2seq}
import com.intel.analytics.zoo.models.textclassification.TextClassifier
import com.intel.analytics.zoo.models.textmatching.KNRM
import com.intel.analytics.zoo.pipeline.api.keras.layers.{Embedding, WordEmbedding}
import com.intel.analytics.zoo.pipeline.api.keras.models.KerasNet
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame}
import scala.reflect.ClassTag
import scala.collection.JavaConverters._
object PythonZooModel {
def ofFloat(): PythonZooModel[Float] = new PythonZooModel[Float]()
def ofDouble(): PythonZooModel[Double] = new PythonZooModel[Double]()
}
class PythonZooModel[T: ClassTag](implicit ev: TensorNumeric[T]) extends PythonZoo[T] {
def saveZooModel(
model: ZooModel[Activity, Activity, T],
path: String,
weightPath: String = null,
overWrite: Boolean = false): ZooModel[Activity, Activity, T] = {
model.saveModel(path, weightPath, overWrite)
}
def createZooTextClassifier(
classNum: Int,
embedding: Embedding[T],
sequenceLength: Int = 500,
encoder: String = "cnn",
encoderOutputDim: Int = 256,
model: AbstractModule[Activity, Activity, T]): TextClassifier[T] = {
TextClassifier[T](classNum, embedding, sequenceLength, encoder, encoderOutputDim, model)
}
def loadTextClassifier(
path: String,
weightPath: String = null): TextClassifier[T] = {
TextClassifier.loadModel(path, weightPath)
}
def textClassifierCompile(
model: TextClassifier[T],
optimizer: OptimMethod[T],
loss: Criterion[T],
metrics: JList[ValidationMethod[T]] = null): Unit = {
model.compile(optimizer, loss,
if (metrics == null) null else metrics.asScala.toList)
}
def textClassifierFit(
model: TextClassifier[T],
x: TextSet,
batchSize: Int,
nbEpoch: Int,
validationData: TextSet): Unit = {
model.fit(x, batchSize, nbEpoch, validationData)
}
def textClassifierPredict(
model: TextClassifier[T],
x: TextSet,
batchPerThread: Int): TextSet = {
model.predict(x, batchPerThread)
}
def textClassifierEvaluate(
model: TextClassifier[T],
x: TextSet,
batchSize: Int): JList[EvaluatedResult] = {
val resultArray = model.evaluate(x, batchSize)
processEvaluateResult(resultArray)
}
private def processEvaluateResult(
resultArray: Array[(ValidationResult, ValidationMethod[T])]): JList[EvaluatedResult] = {
resultArray.map { result =>
EvaluatedResult(result._1.result()._1, result._1.result()._2,
result._2.toString())
}.toList.asJava
}
def textClassifierSetCheckpoint(
model: TextClassifier[T],
path: String,
overWrite: Boolean = true): Unit = {
model.setCheckpoint(path, overWrite)
}
def textClassifierSetTensorBoard(
model: TextClassifier[T],
logDir: String,
appName: String): Unit = {
model.setTensorBoard(logDir, appName)
}
def createZooAnomalyDetector(
featureShape: JList[Int],
hiddenLayers: JList[Int],
dropouts: JList[Double],
model: AbstractModule[Activity, Activity, T]): AnomalyDetector[T] = {
new AnomalyDetector[T](Shape(featureShape.asScala.toArray),
hiddenLayers.asScala.toArray, dropouts.asScala.toArray)
.addModel(model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]])
}
def loadAnomalyDetector(
path: String,
weightPath: String = null): AnomalyDetector[T] = {
AnomalyDetector.loadModel(path, weightPath)
}
def standardScaleDF(df: DataFrame): DataFrame = {
val fields = df.columns
com.intel.analytics.zoo.models.anomalydetection.Utils.standardScale(df, fields)
}
def unroll(dataRdd: JavaRDD[JList[Double]],
unrollLength: Int,
predictStep: Int = 1): JavaRDD[JList[String]] = {
val rdd: RDD[Array[Float]] = dataRdd.rdd.map(x => x.asScala.toArray.map(_.toFloat))
val unrolled = AnomalyDetector.unroll[Float](rdd, unrollLength, predictStep)
toUnrolledJavaRdd(unrolled)
}
private def toUnrolledJavaRdd(features: RDD[FeatureLabelIndex[Float]]): JavaRDD[JList[String]] = {
features.map(x =>
List(x.feature.map(x => x.mkString("|")).mkString(","), x.label.toString,
x.index.toString).asJava).toJavaRDD()
}
private def toAnomaliesJavaRdd(anomaliesRdd: RDD[(Double, Double, Any)]): JavaRDD[JList[Any]] = {
anomaliesRdd.map(x =>
List(x._1, x._2, x._3.asInstanceOf[Any])
.asJava).toJavaRDD()
}
def detectAnomalies(
yTruth: JavaRDD[Object],
yPredict: JavaRDD[Object],
anomalySize: Int = 5): JavaRDD[JList[Any]] = {
val out: RDD[(Double, Double, Any)] = AnomalyDetector.detectAnomalies[Double](
yTruth.rdd.map(_.asInstanceOf[Double]), yPredict.rdd.map(_.asInstanceOf[Double]), anomalySize)
toAnomaliesJavaRdd(out)
}
def zooModelSetEvaluateStatus(
model: ZooModel[Activity, Activity, T]): ZooModel[Activity, Activity, T] = {
model.setEvaluateStatus()
}
def loadObjectDetector(path: String, weightPath: String = null): ObjectDetector[T] = {
ObjectDetector.loadModel(path, weightPath)
}
def loadImageClassifier(path: String, weightPath: String = null): ImageClassifier[T] = {
ImageClassifier.loadModel(path, weightPath)
}
def readPascalLabelMap(): JMap[Int, String] = {
LabelReader.readPascalLabelMap().asJava
}
def readCocoLabelMap(): JMap[Int, String] = {
LabelReader.readCocoLabelMap().asJava
}
def readImagenetLabelMap(): JMap[Int, String] = {
IMCLabelReader.readImagenetlLabelMap().asJava
}
def imageModelPredict(model: ImageModel[T],
image: ImageSet,
config: ImageConfigure[T] = null): ImageSet = {
model.predictImageSet(image, config)
}
def getImageConfig(model: ImageModel[T]): ImageConfigure[T] = {
model.getConfig
}
def createImageConfigure(
preProcessor: Preprocessing[ImageFeature, ImageFeature],
postProcessor: Preprocessing[ImageFeature, ImageFeature],
batchPerPartition: Int,
labelMap: JMap[Int, String],
paddingParam: PaddingParam[T]): ImageConfigure[T] = {
val map = if (labelMap == null) null else labelMap.asScala.toMap
ImageConfigure(preProcessor, postProcessor, batchPerPartition, map, Option(paddingParam))
}
def createVisualizer(labelMap: JMap[Int, String], thresh: Float = 0.3f,
encoding: String): Preprocessing[ImageFeature, ImageFeature] = {
Visualizer(labelMap.asScala.toMap, thresh, encoding, Visualizer.visualized) ->
ImageBytesToMat(Visualizer.visualized) -> ImageMatToFloats(shareBuffer = false)
}
def getLabelMap(imageConfigure: ImageConfigure[T]): JMap[Int, String] = {
if (imageConfigure.labelMap == null) null else imageConfigure.labelMap.asJava
}
def createImInfo(): ImInfo = {
ImInfo()
}
def createDecodeOutput(): DecodeOutput = {
DecodeOutput()
}
def createScaleDetection(): ScaleDetection = {
ScaleDetection()
}
def createPaddingParam(): PaddingParam[T] = {
PaddingParam()
}
def createZooNeuralCF(
userCount: Int,
itemCount: Int,
numClasses: Int,
userEmbed: Int = 20,
itemEmbed: Int = 20,
hiddenLayers: JList[Int],
includeMF: Boolean = true,
mfEmbed: Int = 20,
model: AbstractModule[Activity, Activity, T]): NeuralCF[T] = {
new NeuralCF[T](userCount, itemCount, numClasses, userEmbed, itemEmbed,
hiddenLayers.asScala.toArray, includeMF, mfEmbed)
.addModel(model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]])
}
def loadNeuralCF(
path: String,
weightPath: String = null): NeuralCF[T] = {
NeuralCF.loadModel(path, weightPath)
}
def createZooWideAndDeep(
modelType: String = "wide_n_deep",
numClasses: Int,
hiddenLayers: JList[Int],
wideBaseDims: JList[Int],
wideCrossDims: JList[Int],
indicatorDims: JList[Int],
embedInDims: JList[Int],
embedOutDims: JList[Int],
continuousCols: JList[String],
model: AbstractModule[Activity, Activity, T]): WideAndDeep[T] = {
new WideAndDeep[T](modelType,
numClasses,
wideBaseDims.asScala.toArray,
wideCrossDims.asScala.toArray,
indicatorDims.asScala.toArray,
embedInDims.asScala.toArray,
embedOutDims.asScala.toArray,
continuousCols.asScala.toArray,
hiddenLayers.asScala.toArray)
.addModel(model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]])
}
def loadWideAndDeep(
path: String,
weightPath: String = null): WideAndDeep[T] = {
WideAndDeep.loadModel(path, weightPath)
}
def createZooSessionRecommender(
itemCount: Int,
itemEmbed: Int,
rnnHiddenLayers: JList[Int],
sessionLength: Int,
includeHistory: Boolean,
mlpHiddenLayers: JList[Int],
historyLength: Int,
model: AbstractModule[Activity, Activity, T]): SessionRecommender[T] = {
new SessionRecommender[T](itemCount, itemEmbed, rnnHiddenLayers.asScala.toArray, sessionLength,
includeHistory, mlpHiddenLayers.asScala.toArray, historyLength)
.addModel(model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]])
}
def loadSessionRecommender(
path: String,
weightPath: String = null): SessionRecommender[T] = {
SessionRecommender.loadModel(path, weightPath)
}
def toUserItemFeatureRdd(featureRdd: JavaRDD[Array[Object]]): RDD[UserItemFeature[T]] = {
featureRdd.rdd.foreach(x =>
require(x.length == 3, "UserItemFeature should consist of userId, itemId and sample"))
featureRdd.rdd.map(x =>
UserItemFeature(x(0).asInstanceOf[Int], x(1).asInstanceOf[Int],
toJSample(x(2).asInstanceOf[Sample])))
}
def toPredictionJavaRdd(predictionRdd: RDD[UserItemPrediction]): JavaRDD[JList[Double]] = {
predictionRdd.map(x =>
List(x.userId.toDouble, x.itemId.toDouble, x.prediction.toDouble, x.probability)
.asJava).toJavaRDD()
}
def predictUserItemPair(
model: Recommender[T],
featureRdd: JavaRDD[Array[Object]]): JavaRDD[JList[Double]] = {
val predictionRdd = model.predictUserItemPair(toUserItemFeatureRdd(featureRdd))
toPredictionJavaRdd(predictionRdd)
}
def recommendForUser(
model: Recommender[T],
featureRdd: JavaRDD[Array[Object]],
maxItems: Int): JavaRDD[JList[Double]] = {
val predictionRdd = model.recommendForUser(toUserItemFeatureRdd(featureRdd), maxItems)
toPredictionJavaRdd(predictionRdd)
}
def recommendForItem(
model: Recommender[T],
featureRdd: JavaRDD[Array[Object]],
maxUsers: Int): JavaRDD[JList[Double]] = {
val predictionRdd = model.recommendForItem(toUserItemFeatureRdd(featureRdd), maxUsers)
toPredictionJavaRdd(predictionRdd)
}
def recommendForSession(
model: SessionRecommender[T],
featureRdd: JavaRDD[Sample],
maxItems: Int,
zeroBasedLabel: Boolean): JavaRDD[JList[JList[Float]]] = {
val predictionRdd: RDD[Array[(Int, Float)]] = model
.recommendForSession(toJSample(featureRdd), maxItems, zeroBasedLabel)
predictionRdd.map(x => x.toList.map(y => List(y._1.toFloat, y._2).asJava).asJava).toJavaRDD()
}
def getNegativeSamples(indexed: DataFrame): DataFrame = {
Utils.getNegativeSamples(indexed)
}
def zooModelSummary(model: ZooModel[Activity, Activity, T]): Unit = {
model.summary()
}
def zooModelPredictClasses(
module: ZooModel[Activity, Activity, T],
x: JavaRDD[Sample],
batchSize: Int = 32,
zeroBasedLabel: Boolean = true): JavaRDD[Int] = {
module.predictClasses(toJSample(x), batchSize, zeroBasedLabel).toJavaRDD()
}
def createZooKNRM(
text1Length: Int,
text2Length: Int,
vocabSize: Int,
embedSize: Int,
embedWeights: JTensor = null,
trainEmbed: Boolean = true,
kernelNum: Int = 21,
sigma: Double = 0.1,
exactSigma: Double = 0.001,
targetMode: String = "ranking",
model: AbstractModule[Activity, Activity, T]): KNRM[T] = {
KNRM[T](text1Length, text2Length, vocabSize, embedSize, toTensor(embedWeights),
trainEmbed, kernelNum, sigma, exactSigma, targetMode, model)
}
def loadKNRM(
path: String,
weightPath: String = null): KNRM[T] = {
KNRM.loadModel(path, weightPath)
}
def prepareEmbedding(
embeddingFile: String,
wordIndex: JMap[String, Int] = null,
randomizeUnknown: Boolean = false,
normalize: Boolean = false): JTensor = {
val (_, _, embedWeights) = WordEmbedding.prepareEmbedding[T](
embeddingFile, if (wordIndex!= null) wordIndex.asScala.toMap else null,
randomizeUnknown, normalize)
toJTensor(embedWeights)
}
def createZooSeq2seq(encoder: RNNEncoder[T],
decoder: RNNDecoder[T],
inputShape: JList[Int],
outputShape: JList[Int],
bridge: KerasLayer[Activity, Activity, T] = null,
generator: KerasLayer[Activity, Activity, T] = null,
model: AbstractModule[Table, Tensor[T], T]): Seq2seq[T] = {
Seq2seq(encoder, decoder, toScalaShape(inputShape),
toScalaShape(outputShape), bridge, generator, model)
}
def evaluateNDCG(
ranker: Ranker[T],
x: TextSet,
k: Int,
threshold: Double): Double = {
ranker.evaluateNDCG(x, k, threshold)
}
def evaluateMAP(
ranker: Ranker[T],
x: TextSet,
threshold: Double): Double = {
ranker.evaluateMAP(x, threshold)
}
def seq2seqSetCheckpoint(model: Seq2seq[T],
path: String,
overWrite: Boolean = true): Unit = {
model.setCheckpoint(path, overWrite)
}
def loadSeq2seq(path: String,
weightPath: String = null): Seq2seq[T] = {
Seq2seq.loadModel(path, weightPath)
}
def seq2seqCompile(
model: Seq2seq[T],
optimizer: OptimMethod[T],
loss: Criterion[T],
metrics: JList[ValidationMethod[T]] = null): Unit = {
model.compile(optimizer, loss,
if (metrics == null) null else metrics.asScala.toList)
}
def seq2seqFit(model: Seq2seq[T],
x: JavaRDD[Sample],
batchSize: Int,
nbEpoch: Int,
validationData: JavaRDD[Sample] = null): Unit = {
model.fit(toJSample(x), batchSize, nbEpoch, toJSample(validationData))
}
def seq2seqInfer(model: Seq2seq[T],
input: JTensor,
startSign: JTensor,
maxSeqLen: Int = 30,
stopSign: JTensor = null,
buildOutput: KerasLayer[Tensor[T], Tensor[T], T]): JTensor = {
val result =
model.infer(toTensor(input), toTensor(startSign), maxSeqLen,
toTensor(stopSign), buildOutput)
toJTensor(result)
}
def getModule(model: KerasZooModel[Activity, Activity, T]): KerasNet[T] = {
model.model.asInstanceOf[KerasNet[T]]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy