com.intel.analytics.zoo.models.seq2seq.Seq2seq.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.seq2seq
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.{PaddingParam, Sample}
import com.intel.analytics.bigdl.nn.{BatchNormParams, Cell}
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.nn.keras.{KerasLayer, KerasLayerSerializable}
import com.intel.analytics.bigdl.optim.{OptimMethod, ValidationMethod}
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils._
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.utils.serializer.{ContainerSerializable, DeserializeContext, ModuleSerializer, SerializeContext}
import com.intel.analytics.zoo.models.common.ZooModel
import com.intel.analytics.zoo.pipeline.api.keras.models.{KerasNet, Model, Sequential}
import com.intel.analytics.zoo.pipeline.api.keras.layers._
import com.intel.analytics.zoo.pipeline.api.keras.layers.utils.KerasUtils
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import scala.reflect.runtime._
/**
* [[Seq2seq]] A trainable interface for a simple, generic encoder + decoder model
* @param encoder an encoder object
* @param decoder a decoder object
* @param inputShape shape of encoder input, for variable length, please input -1
* @param outputShape shape of decoder input, for variable length, please input -1
* @param bridge connect encoder and decoder
* @param generator Feeding decoder output to generator to generate final result
*/
class Seq2seq[T: ClassTag] (
val encoder: Encoder[T],
val decoder: Decoder[T],
val inputShape: Shape,
val outputShape: Shape,
val bridge: KerasLayer[Activity, Activity, T],
val generator: KerasLayer[Activity, Activity, T])
(implicit ev: TensorNumeric[T]) extends ZooModel[Table, Tensor[T], T] {
override def buildModel(): AbstractModule[Table, Tensor[T], T] = {
val encoderInput = Input(inputShape)
val decoderInput = Input(outputShape)
val encoderOutput = encoder.inputs(encoderInput)
// select table is 0 based
val encoderFinalStates = SelectTable(1).inputs(encoderOutput)
val decoderInitStates = if (bridge != null) {
bridge.inputs(encoderFinalStates)
}
else encoderFinalStates
val decoderOutput = decoder.inputs(Array(decoderInput, decoderInitStates))
val output = if (generator != null) {
generator.inputs(decoderOutput)
}
else decoderOutput
Model(Array(encoderInput, decoderInput), output)
.asInstanceOf[AbstractModule[Table, Tensor[T], T]]
}
def compile(
optimizer: OptimMethod[T],
loss: Criterion[T],
metrics: List[ValidationMethod[T]] = null)(implicit ev: TensorNumeric[T]): Unit = {
model.asInstanceOf[KerasNet[T]].compile(optimizer, loss, metrics)
}
def fit(
x: RDD[Sample[T]],
batchSize: Int = 32,
nbEpoch: Int = 10,
validationData: RDD[Sample[T]] = null,
featurePaddingParam: PaddingParam[T] = null,
labelPaddingParam: PaddingParam[T] = null)(implicit ev: TensorNumeric[T]): Unit = {
model.asInstanceOf[KerasNet[T]].fit(x, batchSize, nbEpoch, validationData,
featurePaddingParam, labelPaddingParam)
}
def setCheckpoint(path: String, overWrite: Boolean = true): Unit = {
model.asInstanceOf[KerasNet[T]].setCheckpoint(path, overWrite)
}
/**
* Infer output with given input
* @param input a sequence of data feed into encoder, eg: batch x seqLen x featureSize
* @param startSign a tensor which represents start and is fed into decoder
* @param maxSeqLen max sequence length for final output
* @param stopSign a tensor that indicates model should stop infer further if current
* output is the same with stopSign
* @param buildOutput Feeding model output to buildOutput to generate final result
*/
def infer(input: Tensor[T], startSign: Tensor[T], maxSeqLen: Int = 30,
stopSign: Tensor[T] = null,
buildOutput: KerasLayer[Tensor[T], Tensor[T], T] = null): Tensor[T] = {
val sent1 = input
val sent2 = Tensor[T](startSign.size())
sent2.copy(startSign)
sent2.resize(Array(1) ++ startSign.size())
var curInput = sent2
val sizes = curInput.size()
val concat = Tensor[T](Array(sizes(0), maxSeqLen + 1) ++ sizes.drop(2))
concat.narrow(Seq2seq.timeDim, 1, 1).copy(sent2)
var break = false
if (buildOutput != null && !buildOutput.isBuilt()) {
if (generator != null) {
buildOutput.build(generator.getOutputShape())
} else {
buildOutput.build(decoder.getOutputShape())
}
}
var j = 1
// Iteratively output predicted words
while (j <= maxSeqLen && !break) {
val modelOutput = updateOutput(T(sent1, curInput)).toTensor[T]
val generateOutput = if (buildOutput != null) buildOutput.forward(modelOutput)
else modelOutput
val predict = generateOutput.select(2, generateOutput.size(2))
if (stopSign != null && predict.almostEqual(stopSign, 1e-8)) break = true
j += 1
concat.narrow(Seq2seq.timeDim, j, 1).copy(predict)
curInput = concat.narrow(Seq2seq.timeDim, 1, j)
}
curInput
}
}
object Seq2seq extends ContainerSerializable {
ModuleSerializer.registerModule(
"com.intel.analytics.zoo.models.seq2seq.Seq2seq",
Seq2seq)
val timeDim = 2
/**
* [[Seq2seq]] A trainable interface for a simple, generic encoder + decoder model
* @param encoder a rnn encoder object
* @param decoder a rnn decoder object
* @param inputShape shape of encoder input, for variable length, please input -1
* @param outputShape shape of decoder input, for variable length, please input -1
* @param bridge connect encoder and decoder
* @param generator Feeding decoder output to generator to generate final result
*/
def apply[@specialized(Float, Double) T: ClassTag](
encoder: RNNEncoder[T],
decoder: RNNDecoder[T],
inputShape: Shape,
outputShape: Shape,
bridge: KerasLayer[Activity, Activity, T] = null,
generator: KerasLayer[Activity, Activity, T] = null
)(implicit ev: TensorNumeric[T]): Seq2seq[T] = {
require(encoder.rnns.length == decoder.rnns.length, "rnn encoder and decoder should has" +
" the same number of layers!")
new Seq2seq[T](encoder, decoder, inputShape, outputShape,
bridge, generator).build()
}
/**
* This factory method is mainly for Python use.
* Pass in a model to build the Seq2seq.
* Note that if you use this factory method, arguments such as encoder, decoder, etc
* should match the model definition to eliminate ambiguity.
*/
private[zoo] def apply[@specialized(Float, Double) T: ClassTag](
encoder: RNNEncoder[T],
decoder: RNNDecoder[T],
inputShape: Shape,
outputShape: Shape,
bridge: KerasLayer[Activity, Activity, T],
generator: KerasLayer[Activity, Activity, T],
model: AbstractModule[Table, Tensor[T], T])
(implicit ev: TensorNumeric[T]): Seq2seq[T] = {
new Seq2seq[T](encoder, decoder, inputShape, outputShape, bridge, generator)
.addModel(model)
}
/**
* Load an existing seq2seq model (with weights).
*
* @param path The path for the pre-defined model.
* Local file system, HDFS and Amazon S3 are supported.
* HDFS path should be like "hdfs://[host]:[port]/xxx".
* Amazon S3 path should be like "s3a://bucket/xxx".
* @param weightPath The path for pre-trained weights if any. Default is null.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
def loadModel[T: ClassTag](
path: String,
weightPath: String = null)(implicit ev: TensorNumeric[T]): Seq2seq[T] = {
ZooModel.loadModel(path, weightPath).asInstanceOf[Seq2seq[T]]
}
override def doLoadModule[T: ClassTag](context : DeserializeContext)
(implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = {
val attrMap = context.bigdlModule.getAttrMap
val encoderAttr = attrMap.get("encoder")
val encoder = DataConverter.getAttributeValue(context, encoderAttr).
asInstanceOf[RNNEncoder[T]]
val decoderAttr = attrMap.get("decoder")
val decoder = DataConverter.getAttributeValue(context, decoderAttr).
asInstanceOf[RNNDecoder[T]]
val bridgeAttr = attrMap.get("bridge")
val bridge = DataConverter.getAttributeValue(context, bridgeAttr).
asInstanceOf[KerasLayer[Activity, Activity, T]]
val generatorAttr = attrMap.get("generator")
val generator = DataConverter.getAttributeValue(context, generatorAttr).
asInstanceOf[KerasLayer[Activity, Activity, T]]
val inputShapeAttr = attrMap.get("inputShape")
val inputShape = DataConverter.getAttributeValue(context, inputShapeAttr).asInstanceOf[Shape]
val outputShapeAttr = attrMap.get("outputShape")
val outputShape =
DataConverter.getAttributeValue(context, outputShapeAttr).asInstanceOf[Shape]
val seq2seq = new Seq2seq(encoder, decoder, inputShape, outputShape, bridge, generator)
val modelAttr = attrMap.get("model")
val model = DataConverter.getAttributeValue(context, modelAttr).
asInstanceOf[AbstractModule[Table, Tensor[T], T]]
seq2seq.addModel(model)
seq2seq
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
seq2seqBuilder : BigDLModule.Builder)
(implicit ev: TensorNumeric[T]) : Unit = {
val seq2seq = context.moduleData.module.asInstanceOf[Seq2seq[T]]
seq2seq.encoder.asInstanceOf[RNNEncoder[T]].inputShape = seq2seq.inputShape
val encoderBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, encoderBuilder,
seq2seq.encoder, ModuleSerializer.abstractModuleType)
seq2seqBuilder.putAttr("encoder", encoderBuilder.build)
val statesShape = if (seq2seq.bridge != null) {
KerasUtils.removeBatch(seq2seq.bridge.getOutputShape())
} else KerasUtils.removeBatch(Shape(seq2seq.encoder.getOutputShape().toMulti().drop(1)))
val decoderShape =
MultiShape(List(KerasUtils.removeBatch(seq2seq.encoder.getOutputShape().toMulti().head),
statesShape))
seq2seq.decoder.asInstanceOf[RNNDecoder[T]].inputShape = decoderShape
val decoderBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, decoderBuilder,
seq2seq.decoder, ModuleSerializer.abstractModuleType)
seq2seqBuilder.putAttr("decoder", decoderBuilder.build)
val bridgeBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, bridgeBuilder,
seq2seq.bridge, ModuleSerializer.abstractModuleType)
seq2seqBuilder.putAttr("bridge", bridgeBuilder.build)
val generatorBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, generatorBuilder,
seq2seq.generator, ModuleSerializer.abstractModuleType)
seq2seqBuilder.putAttr("generator", generatorBuilder.build)
val shapeBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, shapeBuilder,
seq2seq.inputShape, universe.typeOf[Shape])
seq2seqBuilder.putAttr("inputShape", shapeBuilder.build)
val outputShapeBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, outputShapeBuilder,
seq2seq.outputShape, universe.typeOf[Shape])
seq2seqBuilder.putAttr("outputShape", outputShapeBuilder.build)
val laborBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, laborBuilder,
seq2seq.model, ModuleSerializer.abstractModuleType)
seq2seqBuilder.putAttr("model", laborBuilder.build)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy