com.intel.analytics.zoo.models.textclassification.TextClassifier.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.textclassification
import com.intel.analytics.bigdl.Criterion
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.optim.{OptimMethod, ValidationMethod, ValidationResult}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import com.intel.analytics.zoo.feature.text.TextSet
import com.intel.analytics.zoo.models.common.ZooModel
import com.intel.analytics.zoo.pipeline.api.keras.layers._
import com.intel.analytics.zoo.pipeline.api.keras.models.{KerasNet, Sequential}
import scala.reflect.ClassTag
/**
* The model used for text classification.
*/
class TextClassifier[T: ClassTag] private(
val classNum: Int,
val tokenLength: Int,
val sequenceLength: Int = 500,
val encoder: String = "cnn",
val encoderOutputDim: Int = 256,
val embedding: Embedding[T] = null)(implicit ev: TensorNumeric[T])
extends ZooModel[Activity, Activity, T] {
override def buildModel(): AbstractModule[Activity, Activity, T] = {
val model = Sequential[T]()
if (embedding != null) {
model.add(embedding)
}
else {
model.add(InputLayer(inputShape = Shape(sequenceLength, tokenLength)))
}
if (encoder.toLowerCase() == "cnn") {
model.add(Convolution1D(encoderOutputDim, 5, activation = "relu"))
model.add(GlobalMaxPooling1D())
}
else if (encoder.toLowerCase() == "lstm") {
model.add(LSTM(encoderOutputDim))
}
else if (encoder.toLowerCase() == "gru") {
model.add(GRU(encoderOutputDim))
}
else {
throw new IllegalArgumentException(s"Unsupported encoder for TextClassifier: $encoder")
}
model.add(Dense(128))
model.add(Dropout(0.2))
model.add(Activation("relu"))
model.add(Dense(classNum, activation = "softmax"))
model
}
// For the following methods, please refer to KerasNet for documentation.
def compile(
optimizer: OptimMethod[T],
loss: Criterion[T],
metrics: List[ValidationMethod[T]] = null)(implicit ev: TensorNumeric[T]): Unit = {
model.asInstanceOf[KerasNet[T]].compile(optimizer, loss, metrics)
}
def fit(
x: TextSet,
batchSize: Int,
nbEpoch: Int,
validationData: TextSet = null)(implicit ev: TensorNumeric[T]): Unit = {
model.asInstanceOf[KerasNet[T]].fit(x, batchSize, nbEpoch, validationData)
}
def evaluate(
x: TextSet,
batchSize: Int)
(implicit ev: TensorNumeric[T]): Array[(ValidationResult, ValidationMethod[T])] = {
model.asInstanceOf[KerasNet[T]].evaluate(x, batchSize)
}
def predict(
x: TextSet,
batchPerThread: Int): TextSet = {
model.asInstanceOf[KerasNet[T]].predict(x, batchPerThread)
}
def setTensorBoard(logDir: String, appName: String): Unit = {
model.asInstanceOf[KerasNet[T]].setTensorBoard(logDir, appName)
}
def setCheckpoint(path: String, overWrite: Boolean = true): Unit = {
model.asInstanceOf[KerasNet[T]].setCheckpoint(path, overWrite)
}
}
object TextClassifier {
/**
* The factory method to create a TextClassifier instance with WordEmbedding as
* its first layer.
*
* @param classNum The number of text categories to be classified. Positive integer.
* @param embeddingFile The path to the word embedding file.
* Currently only the following GloVe files are supported:
* "glove.6B.50d.txt", "glove.6B.100d.txt", "glove.6B.200d.txt",
* "glove.6B.300d.txt", "glove.42B.300d.txt", "glove.840B.300d.txt".
* You can download from: https://nlp.stanford.edu/projects/glove/.
* @param wordIndex Map of word (String) and its corresponding index (integer).
* The index is supposed to start from 1 with 0 reserved for unknown words.
* During the prediction, if you have words that are not in the wordIndex
* for the training, you can map them to index 0.
* Default is null. In this case, all the words in the embeddingFile will
* be taken into account and you can call
* WordEmbedding.getWordIndex(embeddingFile) to retrieve the map.
* @param sequenceLength The length of a sequence. Positive integer. Default is 500.
* @param encoder The encoder for input sequences. String. "cnn" or "lstm" or "gru" are supported.
* Default is "cnn".
* @param encoderOutputDim The output dimension for the encoder. Positive integer. Default is 256.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
def apply[@specialized(Float, Double) T: ClassTag](
classNum: Int,
embeddingFile: String,
wordIndex: Map[String, Int] = null,
sequenceLength: Int = 500,
encoder: String = "cnn",
encoderOutputDim: Int = 256)(implicit ev: TensorNumeric[T]): TextClassifier[T] = {
val embedding = WordEmbedding(embeddingFile, wordIndex, inputLength = sequenceLength)
new TextClassifier[T](classNum, embedding.outputDim, sequenceLength, encoder,
encoderOutputDim, embedding).build()
}
/**
* The factory method to create a TextClassifier instance that takes word vectors as input.
*/
@deprecated("Instead of using 'tokenLength', please pass the arguments 'embeddingFile' " +
"and 'wordIndex' to construct a TextClassifier with WordEmbedding as the first layer.")
def apply[@specialized(Float, Double) T: ClassTag](
classNum: Int,
tokenLength: Int,
sequenceLength: Int,
encoder: String,
encoderOutputDim: Int)(implicit ev: TensorNumeric[T]): TextClassifier[T] = {
new TextClassifier[T](classNum, tokenLength, sequenceLength, encoder, encoderOutputDim).build()
}
/**
* This factory method is mainly for Python use.
* Pass in a model to build the TextClassifier.
* Note that if you use this factory method, arguments such as classNum, tokenLength, etc
* should match the model definition to eliminate ambiguity.
*/
private[zoo] def apply[@specialized(Float, Double) T: ClassTag](
classNum: Int,
embedding: Embedding[T],
sequenceLength: Int,
encoder: String,
encoderOutputDim: Int,
model: AbstractModule[Activity, Activity, T])
(implicit ev: TensorNumeric[T]): TextClassifier[T] = {
new TextClassifier[T](classNum, embedding.outputDim, sequenceLength,
encoder, encoderOutputDim, embedding).addModel(model)
}
/**
* Load an existing TextClassifier model (with weights).
*
* @param path The path for the pre-defined model.
* Local file system, HDFS and Amazon S3 are supported.
* HDFS path should be like "hdfs://[host]:[port]/xxx".
* Amazon S3 path should be like "s3a://bucket/xxx".
* @param weightPath The path for pre-trained weights if any. Default is null.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
def loadModel[T: ClassTag](
path: String,
weightPath: String = null)(implicit ev: TensorNumeric[T]): TextClassifier[T] = {
ZooModel.loadModel(path, weightPath).asInstanceOf[TextClassifier[T]]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy