com.intel.analytics.zoo.tfpark.TFModelBroadcast.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.12.2-spark_2.2.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.tfpark
import java.io._
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.models.utils.{CachedModels, ModelBroadcast, ModelInfo}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.nn.mkldnn.{MklDnnLayer, TensorMMap}
import com.intel.analytics.bigdl.nn.tf.Const
import com.intel.analytics.bigdl.tensor.{QuantizedTensor, QuantizedType, Storage, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.zoo.common.CheckedObjectInputStream
import com.intel.analytics.zoo.pipeline.api.keras.layers.utils.EngineRef
import com.intel.analytics.zoo.pipeline.api.net.SerializationHolder
import com.intel.analytics.zoo.tfpark.Util._
import org.apache.commons.lang3.SerializationUtils
import org.apache.spark.SparkContext
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
class TFModelBroadcast[T: ClassTag]()
(implicit ev: TensorNumeric[T]) extends ModelBroadcast[T] {
// private type NativeType = (String, (Array[TensorMMap], Array[TensorMMap]))
private var broadcastModel: Broadcast[ModelInfo[T]] = _
private var broadcastConsts: Broadcast[Map[String, Tensor[_]]] = _
private var broadcastParameters: Broadcast[Array[Tensor[T]]] = _
private var broadcastExtraParameters: Broadcast[Array[Tensor[T]]] = _
// private var broadcastParametersNative: Broadcast[Array[NativeType]] = _
private var nodeNumber: Int = _
private var coreNumber: Int = _
private def setNodeAndCore(): Unit = {
nodeNumber = EngineRef.getNodeNumber()
coreNumber = EngineRef.getCoreNumber()
}
/**
* broadcast the model
* first get and clear Const values from the model
* then get and clear the weight and bias parameters from the model
* finally broadcast Const values, the parameters and model(without parameters) separately
*
* @param sc SparkContext
* @param model model to broadcast
* @return this
*/
override def broadcast(sc: SparkContext, model: Module[T]): this.type = {
CachedModels.deleteAll(uuid) // delete the models on driver
// broadcast Consts
// if (model.isInstanceOf[Container[_, _, T]]) {
// val moduleConsts = getAndClearConsts(model.asInstanceOf[Container[_, _, T]])
// // TODO: broadcast Const, model structure and weight in the same broadcast.
// broadcastConsts = sc.broadcast(moduleConsts)
// }
// broadcast weight and model
val weightsBias = getAndClearWeightBias(model.parameters())
val extraParams = getAndClearExtraParameters(model.getExtraParameter())
broadcastModel = sc.broadcast(ModelInfo[T](uuid, model))
broadcastParameters = sc.broadcast(weightsBias)
broadcastExtraParameters = sc.broadcast(extraParams)
broadcastParameters = sc.broadcast(weightsBias)
// For quantized model if we don't clone weightsBias, the original model will be released also
// when we delete all models used in `ModelBroadcast`.
putWeightBias(cloneParameters(weightsBias), model)
initGradWeightBias(weightsBias, model)
putExtraParams(extraParams, model)
setNodeAndCore()
this
}
/**
* get the broadcast model
* put the weight and bias back to the model
*
* @param initGradient If create a tensor for gradient when fetch the model. Please note that
* the gradient is not needed in model inference
* @return model
*/
override def value(initGradient: Boolean = false, shareWeight: Boolean = true): Module[T] = {
EngineRef.setCoreNumber(coreNumber)
// Engine.setNodeAndCore(nodeNumber, coreNumber)
CachedModels.deleteAll(this.uuid)
val localModel = broadcastModel.value.model.cloneModule()
val uuid = broadcastModel.value.uuid
CachedModels.add(uuid, localModel)
val parameters = if (shareWeight) {
broadcastParameters.value
} else {
SerializationUtils.clone(broadcastParameters.value)
}
// share weight
putWeightBias(parameters, localModel)
// // share Consts
// if (localModel.isInstanceOf[Container[_, _, T]] && broadcastConsts.value.nonEmpty) {
// putConsts(localModel.asInstanceOf[Container[_, _, T]], broadcastConsts.value)
// }
if (initGradient) {
initGradWeightBias(broadcastParameters.value, localModel)
}
putExtraParams(broadcastExtraParameters.value, localModel)
localModel
}
override def broadcast(sc: SparkContext, model: Module[T],
dummyInput: Activity): this.type = {
this.broadcast(sc, model)
this
}
override def value(initGradient: Boolean, shareWeight: Boolean,
dummyInput: Activity): Module[T] = {
val model = value(initGradient, shareWeight)
model
}
}
private[zoo] class ModelInfo[T: ClassTag](var uuid: String, @transient var model: Module[T])(
implicit ev: TensorNumeric[T]) extends SerializationHolder {
override def writeInternal(out: CommonOutputStream): Unit = {
out.writeString(uuid)
val stream = new ByteArrayOutputStream()
val oos = new ObjectOutputStream(stream)
val cloned = model.cloneModule()
oos.writeObject(cloned)
oos.close()
val w = stream.toByteArray
val len = w.length
out.writeInt(len)
out.write(w)
CachedModels.add(uuid, cloned)
}
override def readInternal(in: CommonInputStream): Unit = {
uuid = in.readString()
val len = in.readInt()
require(len != 0, "model length should not be zero," +
"please set logging level to debug for more information")
assert(len >= 0, "model length should be an non-negative integer")
val w = new Array[Byte](len)
var numOfBytes = 0
while (numOfBytes < len) {
val read = in.read(w, numOfBytes, len - numOfBytes)
numOfBytes += read
}
val ois = new CheckedObjectInputStream(classOf[Module[T]], new ByteArrayInputStream(w))
try {
model = ois.readObject().asInstanceOf[Module[T]]
CachedModels.add(uuid, model)
} finally {
ois.close()
}
}
}
private[zoo] object ModelInfo {
def apply[T: ClassTag](uuid: String, model: Module[T])(
implicit ev: TensorNumeric[T]): ModelInfo[T] = new ModelInfo[T](uuid, model)
}
private[zoo] object CachedModels {
import java.util.concurrent.ConcurrentHashMap
import scala.collection._
import scala.collection.convert.decorateAsScala._
import scala.language.existentials
type Modles = ArrayBuffer[Module[_]]
private val cachedModels =
new ConcurrentHashMap[String, Modles]().asScala
def add[T: ClassTag](uuid: String, model: Module[T])(implicit ev: TensorNumeric[T]): Unit =
CachedModels.synchronized {
val models = cachedModels.get(uuid) match {
case Some(values) => values += model.asInstanceOf[Module[_]]
case _ => ArrayBuffer(model.asInstanceOf[Module[_]])
}
cachedModels.put(uuid, models.asInstanceOf[Modles])
}
def deleteAll[T: ClassTag](currentKey: String)(implicit ev: TensorNumeric[T]): Unit =
CachedModels.synchronized {
val keys = cachedModels.keys
for (key <- keys) {
if (key != currentKey) {
val models = cachedModels(key)
for (model <- models) {
model.release()
}
cachedModels.remove(key)
}
}
}
def deleteKey[T: ClassTag](key: String)(implicit ev: TensorNumeric[T]): Unit =
CachedModels.synchronized {
val keys = cachedModels.keys
for (k <- keys) {
if (k == key) {
val models = cachedModels(key)
for (model <- models) {
model.release()
}
cachedModels.remove(key)
}
}
}
}
object Util {
private[zoo] def getAndClearWeightBias[T: ClassTag]
(parameters: (Array[Tensor[T]], Array[Tensor[T]]))(implicit ev: TensorNumeric[T])
: Array[Tensor[T]] = {
clearTensor(parameters._2)
getAndClearParameters(parameters._1)
}
private[zoo] def getAndClearExtraParameters[T: ClassTag]
(parameters: Array[Tensor[T]])(implicit ev: TensorNumeric[T])
: Array[Tensor[T]] = {
getAndClearParameters(parameters)
}
private[zoo] def getAndClearParameters[T: ClassTag]
(parameters: Array[Tensor[T]])(implicit ev: TensorNumeric[T])
: Array[Tensor[T]] = {
if (parameters != null) {
if (parameters.length != 0) {
var i = 0
val retParams = new Array[Tensor[T]](parameters.length)
// val isQuantized = parameters._1.exists(_.getTensorType == QuantizedType)
val (isCompacted, storage) = {
val storage = Storage(parameters(0).storage.array())
(parameters.map(_.nElement()).sum == storage.length(), storage)
}
// get parameters
while (i < parameters.length) {
if (parameters(i) != null) {
val wb = parameters(i)
retParams(i) = if (isCompacted) {
Tensor[T](storage, wb.storageOffset(), wb.size(), wb.stride())
} else {
Tensor[T](Storage(wb.storage().array()), wb.storageOffset(), wb.size(), wb.stride())
}
i += 1
}
}
// clear parameters
clearTensor(parameters)
retParams
} else {
// just return an empty array when parameters is empty.
Array()
}
} else {
null
}
}
private def clearTensor[T: ClassTag](tensors: Array[Tensor[T]])
(implicit ev: TensorNumeric[T]): Unit = {
if (tensors != null) {
var i = 0
while (i < tensors.length) {
if (tensors(i) != null) {
tensors(i).set()
}
i += 1
}
}
}
private[zoo] def putWeightBias[T: ClassTag](broadcastWeightBias: Array[Tensor[T]],
localModel: Module[T])(
implicit ev: TensorNumeric[T]): Unit = {
val localWeightBias = localModel.parameters()._1
var i = 0
while (i < localWeightBias.length) {
if (localWeightBias(i) != null) {
clearAndSet(localWeightBias(i), broadcastWeightBias(i))
}
i += 1
}
def clearAndSet(old: Tensor[T], other: Tensor[T]): Unit = {
old.set(other)
}
}
private[zoo] def putExtraParams[T: ClassTag](broadcastExtraParams: Array[Tensor[T]],
localModel: Module[T])(
implicit ev: TensorNumeric[T]): Unit = {
val localExtraParams = localModel.getExtraParameter()
if (localExtraParams != null) {
var i = 0
while (i < localExtraParams.length) {
if (localExtraParams(i) != null) {
localExtraParams(i).set(broadcastExtraParams(i))
}
i += 1
}
}
}
private[zoo] def initGradWeightBias[T: ClassTag](broadcastWeightBias: Array[Tensor[T]],
localModel: Module[T])(
implicit ev: TensorNumeric[T]): Unit = {
val (localWeightBias, localGradWeightBias) = localModel.parameters()
// init gradient with a compacted storage
val storage = Storage[T](localGradWeightBias.map(_.nElement()).sum)
val isQuantized = broadcastWeightBias.exists(_.getTensorType == QuantizedType)
var i = 0
while (i < localWeightBias.length) {
if (localWeightBias(i) != null) {
val wb = broadcastWeightBias(i)
wb.getTensorType match {
case QuantizedType =>
localGradWeightBias(i).set(Tensor(1))
case _ =>
localGradWeightBias(i).set(storage, wb.storageOffset(), wb.size(), wb.stride())
}
}
i += 1
}
}
private[zoo] def cloneParameters[T: ClassTag]
(parameters: Array[Tensor[T]])(implicit ev: TensorNumeric[T])
: Array[Tensor[T]] = {
if (parameters != null) {
if (parameters.length != 0) {
var i = 0
val retParams = new Array[Tensor[T]](parameters.length)
val (isCompacted, storage) = {
val storage = Storage(parameters(0).storage.array())
(parameters.map(_.nElement()).sum == storage.length(), storage)
}
val resultStorage = if (isCompacted) {
val resultStorage = Storage[T](storage.length())
System.arraycopy(storage.array(), parameters(0).storageOffset() - 1,
resultStorage.array(), 0, storage.length())
resultStorage
} else {
null
}
// clone parameters
while (i < parameters.length) {
if (parameters(i) != null) {
val wb = parameters(i)
retParams(i) = if (isCompacted) {
Tensor[T](resultStorage, wb.storageOffset(), wb.size(), wb.stride())
} else {
wb.clone()
}
i += 1
}
}
retParams
} else {
// just return an empty array when parameters is empty.
Array()
}
} else {
null
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy