com.intel.analytics.zoo.common.MKLBlas.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.common
import com.intel.analytics.bigdl.mkl.{MKL => BMKL}
import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.zoo.mkl.MKL.{vdErf, vsErf}
import org.apache.logging.log4j.LogManager
import scala.reflect.ClassTag
private[zoo] object MKLBlas {
private val logger = LogManager.getLogger(getClass)
def erf[T: ClassTag](tensor: Tensor[T])
(implicit ev: TensorNumeric[T]): Unit = {
if (BMKL.isMKLLoaded && tensor.isContiguous()) {
ev.getType() match {
case FloatType =>
val value = tensor.storage().array().asInstanceOf[Array[Float]]
vsErf(tensor.nElement(), value, tensor.storageOffset() - 1,
value, tensor.storageOffset() - 1)
case DoubleType =>
val value = tensor.storage().array().asInstanceOf[Array[Double]]
vdErf(tensor.nElement(), value, tensor.storageOffset() - 1,
value, tensor.storageOffset() - 1)
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
} else {
logger.warn("MKL is not used for erf, with mkl the performance will be much better")
tensor.erf()
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy