All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.zoo.examples.inception.Options.scala Maven / Gradle / Ivy

/*
 * Copyright 2018 Analytics Zoo Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.intel.analytics.zoo.examples.inception

import scopt.OptionParser

object Options {

  case class TrainParams(
    folder: String = "./",
    checkpoint: Option[String] = None,
    modelSnapshot: Option[String] = None,
    stateSnapshot: Option[String] = None,
    classNumber: Int = 1000,
    batchSize: Int = -1,
    learningRate: Double = 0.01,
    env: String = "local",
    overWriteCheckpoint: Boolean = false,
    maxEpoch: Option[Int] = None,
    maxIteration: Int = 62000,
    weightDecay: Double = 0.0001,
    checkpointIteration: Int = 620,
    graphModel: Boolean = false,
    maxLr: Option[Double] = None,
    warmupEpoch: Option[Int] = None,
    gradientL2NormThreshold: Option[Double] = None,
    gradientMin: Option[Double] = None,
    gradientMax: Option[Double] = None,
    memoryType: String = "DRAM",
    opencv: Boolean = false
  )

  val trainParser = new OptionParser[TrainParams]("BigDL Inception Example") {
    opt[String]('f', "folder")
      .text("url of hdfs folder store the hadoop sequence files")
      .action((x, c) => c.copy(folder = x))
    opt[String]("model")
      .text("model snapshot location")
      .action((x, c) => c.copy(modelSnapshot = Some(x)))
    opt[String]("state")
      .text("state snapshot location")
      .action((x, c) => c.copy(stateSnapshot = Some(x)))
    opt[String]("checkpoint")
      .text("where to cache the model")
      .action((x, c) => c.copy(checkpoint = Some(x)))
    opt[Int]('e', "maxEpoch")
      .text("epoch numbers")
      .action((x, c) => c.copy(maxEpoch = Some(x)))
    opt[Int]('i', "maxIteration")
      .text("iteration numbers")
      .action((x, c) => c.copy(maxIteration = x))
    opt[Double]('l', "learningRate")
      .text("inital learning rate")
      .action((x, c) => c.copy(learningRate = x))
      .required()
    opt[Int]('b', "batchSize")
      .text("batch size")
      .action((x, c) => c.copy(batchSize = x))
      .required()
    opt[Int]("classNum")
      .text("class number")
      .action((x, c) => c.copy(classNumber = x))
    opt[Unit]("overWrite")
      .text("overwrite checkpoint files")
      .action( (_, c) => c.copy(overWriteCheckpoint = true) )
    opt[Double]("weightDecay")
      .text("weight decay")
      .action((x, c) => c.copy(weightDecay = x))
    opt[Int]("checkpointIteration")
      .text("checkpoint interval of iterations")
      .action((x, c) => c.copy(checkpointIteration = x))
    opt[Unit]('g', "graphModel")
      .text("use graph model")
      .action((x, c) => c.copy(graphModel = true))
    opt[Double]("maxLr")
      .text("max Lr after warm up")
      .action((x, c) => c.copy(maxLr = Some(x)))
    opt[Int]("warmupEpoch")
      .text("warm up epoch numbers")
      .action((x, c) => c.copy(warmupEpoch = Some(x)))
    opt[Double]("gradientL2NormThreshold")
      .text("gradient L2-Norm threshold")
      .action((x, c) => c.copy(gradientL2NormThreshold = Some(x)))
    opt[Double]("gradientMax")
      .text("max gradient clipping by")
      .action((x, c) => c.copy(gradientMax = Some(x)))
    opt[Double]("gradientMin")
      .text("min gradient clipping by")
      .action((x, c) => c.copy(gradientMin = Some(x)))
    opt[String]("memoryType")
      .text("memory type, DRAM, PMEM or DISK_n")
      .action((x, c) => c.copy(memoryType = x))
    opt[Unit]("opencv")
      .text("use opencv preprocessing")
      .action( (_, c) => c.copy(opencv = true) )
  }

  case class TestParams(
    folder: String = "./",
    model: String = "",
    batchSize: Option[Int] = None
  )

  val testParser = new OptionParser[TestParams]("BigDL Inception Test Example") {
    opt[String]('f', "folder")
      .text("url of hdfs folder store the hadoop sequence files")
      .action((x, c) => c.copy(folder = x))
    opt[String]("model")
      .text("model snapshot location")
      .action((x, c) => c.copy(model = x))
      .required()
    opt[Int]('b', "batchSize")
      .text("batch size")
      .action((x, c) => c.copy(batchSize = Some(x)))
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy