com.intel.analytics.zoo.feature.common.FeatureLabelPreprocessing.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.common
import com.intel.analytics.bigdl.dataset.Sample
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* construct a Preprocessing that convert (Feature, Label) tuple to a Sample.
* The returned Preprocessing is robust for the case label = None, in which the
* Sample is derived from Feature only.
* @param featureStep Preprocessing for feature, transform F to Tensor[T]
* @param labelStep Preprocessing for label, transform L to Tensor[T]
* @tparam F data type from feature column, E.g. Array[_] or Vector
* @tparam L data type from label column, E.g. Float, Double, Array[_] or Vector
*/
class FeatureLabelPreprocessing[F, X, L, T: ClassTag] private[zoo] (
featureStep: Preprocessing[F, X],
labelStep: Preprocessing[L, Tensor[T]]
)(implicit ev: TensorNumeric[T]) extends Preprocessing[(F, Option[L]), Sample[T]] {
override def apply(prev: Iterator[(F, Option[L])]): Iterator[Sample[T]] = {
prev.map { case (feature, label ) =>
val featureTensors = featureStep(Iterator(feature)).next()
featureTensors match {
case ft: Tensor[T] =>
val ft = featureTensors.asInstanceOf[Tensor[T]]
label match {
case Some(l) =>
val labelTensor = labelStep(Iterator(l)).next()
Sample[T](ft, labelTensor)
case None =>
Sample[T](ft)
}
case fat: Array[Tensor[T]] =>
label match {
case Some(l) =>
val labelTensor = labelStep(Iterator(l)).next()
Sample[T](fat, labelTensor)
case None =>
Sample[T](fat)
}
case _ =>
throw new UnsupportedOperationException(
s"FeatureLabelPreprocessing expects table or tensor, but got $featureTensors")
}
}
}
}
object FeatureLabelPreprocessing {
def apply[F, X, L, T: ClassTag](
featureStep: Preprocessing[F, X],
labelStep: Preprocessing[L, Tensor[T]]
)(implicit ev: TensorNumeric[T]): FeatureLabelPreprocessing[F, X, L, T] =
new FeatureLabelPreprocessing(featureStep, labelStep)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy